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Executive summary

This document presents the foundational methodologies, algorithms, and technical frameworks
that support the AutoTRUST project’s vision for autonomous, inclusive, and resilient mobility
solutions. The deliverable is structured to guide both technical partners and the broader con-
sortium in the integration and advancement of multimodal perception, focusing on the acquisi-
tion, synchronisation, and processing of heterogeneous sensor data. Key technologies covered
include radar, LiDAR, RGB cameras, and microphone arrays, each selected for their complemen-
tary strengths in robust perception under diverse operating conditions. The document provides
a critical review of the state of the art, highlighting the need for cost-effective yet accurate so-
lutions that can be deployed at scale, particularly for applications where high-resolution sensors
may be cost-prohibitive.

The deliverable introduces a comprehensive suite of algorithms and pipelines for external sen-
sor data processing and fusion. The focus is placed on perception based on sensor modalities
such as LiDAR, radar and cameras. A LiDAR super-resolution framework is introduced, where a
novel model-based Deep Unrolling (DU) framework is developed to enhance the spatial resolu-
tion of affordable, low-channel LiDAR sensors. This approach is designed for real-time execution
and is tightly integrated with downstream tasks such as Simultaneous Localisation And Mapping
(SLAM) and semantic segmentation. The report demonstrates, through extensive benchmark-
ing, that the proposed Super-Resolution (SR) methods not only bridge the performance gap
with high-end LiDAR devices but also ensure computational efficiency, making them suitable for
embedded and resource-constrained platforms. For segmentation, a pioneering end-to-end op-
timisation is presented, in which the SR and segmentation networks are jointly trained using
context-aware loss functions to maximize accuracy for both dominant and underrepresented
classes. The document further details radar-based environment perception and mapping pipe-
lines, leveraging the resilience of radar to challenging weather and lighting conditions. Addi-
tionally, a federated learning approach named FedKalmanNet is introduced, to enable multi-
modal vehicle localisation. This approach allows vehicles to aggregate local sensor measure-
ments and collaboratively train models for high-accuracy positioning, all while preserving data
privacy and reducing communication overhead. Performance evaluations using real-world da-
tasets and simulation environments (such as SemanticKITTI, SemanticPOSS, and CARLA) validate
the effectiveness and efficiency of these external perception modules.

For radar, the report introduces a perception pipeline capable of reliably classifying vulnerable
road users such as humans in any weather and lighting conditions. The presented pipeline takes
the 4D radar point cloud as an input and processes it through multiple steps including cluster-
ing, tracking using a Kalman filter with joint probability density association, as well as a deep
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neural network-based classification algorithm. For the latter, Pointnet++ based architecture is
designed and adopted to the radar modality. Based on the collected dataset, the model is
trained to reliably classify humans and distinguish from other objects on the road. Furthermore,
radar-based localisation and mapping framework is introduced that achieves a remarkable
mapping accuracy based on a single drive, building a highly dense radar map that can serve for
localisation in any environmental condition, such as night, fog, snow, or heavy rain.

On the internal monitoring system side, the deliverable addresses the technical groundwork for
future in-cabin perception and monitoring applications. Rather than presenting final driver or
passenger monitoring systems, this document focuses on the systematic collection, synchroni-
sation, and fusion of visual and acoustic data within the vehicle cabin. The deliverable details
the architecture for capturing high-quality visual information using RGB cameras and spatially
synchronised audio streams using advanced microphone arrays. These multimodal datasets are
curated with attention to the requirements of future analytics, such as driver distraction detec-
tion, facial emotion recognition, occupant identification, drowsiness detection, and abnormal
sound event recognition. Emphasis is placed on establishing reliable data pipelines, robust syn-
chronisation methods, and flexible interfaces that enable the seamless integration of various
sensor modalities. This technical foundation ensures that subsequent work packages can effi-
ciently leverage the collected data to develop advanced in-cabin analytics, virtual assistants,
and real-time safety applications. The deliverable also discusses strategies for data annotation,
the evaluation of open-source and project-specific datasets, and the challenges inherent in
monitoring dynamic in-cabin environments, ensuring that the AutoTRUST project is equipped to
address both technical and human-centric needs.

The deliverable further establishes clear best practices for designing scalable, modular, and
hardware-agnostic systems, ensuring future-proof integration with evolving sensor technolo-
gies and analytics modules. Comprehensive benchmarking and evaluation protocols provide
evidence of the project’s commitment to high performance and practical deployment. As the
initial release of the multimodal data processing framework, this deliverable sets the stage for
ongoing development, refinement, and validation throughout the AutoTRUST project lifecycle,
with future updates planned to capture advances in technology and feedback from real-world
pilot deployments.
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1 Introduction

This deliverable, D3.1 “Multimodal Data Processing”, serves as a key technical milestone in the
AutoTRUST project, providing a detailed account of the methodologies, algorithms, and integra-
tion strategies developed for processing heterogeneous sensor data in automated mobility en-
vironments. The document is intended to guide both technical partners and consortium stake-
holders in the design, implementation, and benchmarking of robust multimodal perception
pipelines. By establishing best practices for sensor selection, calibration, data acquisition, and
fusion, this deliverable lays the groundwork for scalable, real-time processing frameworks that
support a wide range of perception and monitoring applications—both external (environmental
sensing) and internal (in-cabin analytics). The content of D3.1 is structured to ensure alignment
with project objectives of inclusiveness, user-centricity, and resilience, and provides the refer-
ence architecture for subsequent technical work packages and pilot site deployments.

1.1 Purpose and structure of the document

The purpose of this deliverable, D3.1 “Multimodal Data Processing”, is to provide a comprehen-
sive account of the technical foundations and key decisions guiding the development of multi-
modal perception systems within the AutoTRUST project. This report documents the essential
activities and approaches undertaken in the initial stages of the project, including an in-depth
review and selection of sensing technologies and data processing methodologies. The practices
outlined herein have been chosen not only for their technical merits, but also for their align-
ment with AutoTRUST’s vision of fostering reliable, inclusive, and adaptive automated mobility
solutions.

Beyond the technical underpinnings, the document places significant emphasis on the system-
atic integration and synchronisation of heterogeneous sensor data, establishing robust pipe-
lines for external environmental sensing and internal in-cabin analytics. It details the architec-
tural and algorithmic strategies that ensure high performance across diverse operational sce-
narios, reflecting the collaborative efforts of project partners. These strategies serve as tech-
nical guidelines, supporting the creation of scalable and hardware-agnostic systems capable of
evolving with future advancements in sensor and Al technologies.

Additionally, the report presents the evaluation criteria and Key Performance Indicators (KPlIs)
established to assess the effectiveness, efficiency, and scalability of the developed systems,
with attention to real-world applicability and user impact.

Following the Introduction, which clarifies the document’s objectives, intended audience, and
role within the broader project framework, the structure is organized as follows:
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e Section 2 describes the sensor modalities used in the project, detailing the acquisition
pipelines and calibration procedures for each sensing technology.

e Section 3 introduces the core algorithms for external perception, including LiDAR super-
resolution, radar-based detection and Simultaneous Localisation and Mapping (SLAM),
and multimodal fusion techniques.

e Section 4 focuses on internal monitoring, presenting methods for fusing visual and
acoustic data for occupant state estimation, along with synchronisation and simulation
frameworks.

e Section 5 summarises the findings and outlines future directions for development and
integration in subsequent project phases.

This structure is designed to provide all stakeholders with clear guidance on the technical tra-
jectory of the project, while ensuring traceability and alignment with the overarching goals of
AutoTRUST.

1.2 Intended Audience

The AutoTRUST “Multimodal Data Processing” deliverable is intended for both public dissemi-
nation and internal use within the AutoTRUST consortium, which includes project members,
research partners, industry collaborators, and affiliated stakeholders. This document serves as a
comprehensive reference, providing detailed technical guidance on sensor selection, data ac-
quisition, synchronisation, and multimodal data processing methodologies. It is designed to
support engineers, researchers, and system architects involved in the development and integra-
tion of advanced perception systems, while also offering insight for external parties interested
in the project’s technical foundations and best practices. Throughout the duration of the pro-
ject, this deliverable acts as a foundational resource to inform decision-making, ensure meth-
odological consistency, and guide future developments within the AutoTRUST framework.

1.3 Interrelations

The AutoTRUST consortium brings together a diverse range of expertise and resources from
leading academic institutions, research organizations, and industry partners across Europe and
associated countries. This multidisciplinary collaboration is focused on developing innovative,
Al-driven solutions that enhance inclusiveness, resilience, and trust in Cooperative Connected
and Automated Mobility (CCAM) systems. With sixteen partners spanning ten EU member
states as well as Norway, Switzerland, the United Kingdom, Korea, and Japan, the consortium
ensures comprehensive coverage of critical topics such as security, privacy, safety, and user
well-being.
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AutoTRUST operates as a Research Innovation Action (RIA) project, organized into six Work
Packages (WPs) that are further subdivided into targeted tasks. Partners contribute across mul-
tiple WPs, enabling a well-coordinated approach to project management, technical develop-
ment, and dissemination. This structured framework fosters close cooperation and effective
knowledge transfer among research institutes, universities, SMEs, and large industry players.

Within this context, the “Multimodal Data Processing” deliverable plays a pivotal role in sup-
porting and informing the technical activities across the project. The methodologies, algo-
rithms, and processing pipelines documented here provide essential input to technical work
packages such as WP3 and WP4, while also aligning with the requirements and specifications
defined in earlier project stages. Furthermore, the outputs of this deliverable are designed to
facilitate evaluation and validation processes in later phases of the project, thereby ensuring a
seamless integration of multimodal perception within the broader AutoTRUST architecture.
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2 Multi-Modal sensor data acquisition and calibration

This section introduces the sensor modalities integrated into the AutoTRUST framework and
outlines the methods used to acquire, synchronise, and calibrate their data. Each sensor modal-
ity, i.e., radar, RGB camera, LiDAR, microphone array, and event-based camera, offers comple-
mentary strengths that, when fused, enable robust perception across diverse driving condi-
tions. The section provides a concise description of each sensor’s operating principles and per-
formance characteristics, followed by calibration techniques essential for spatial and temporal
alignment. These procedures ensure accurate data fusion and serve as the foundation for the
downstream processing and analytics modules detailed in later sections.

2.1 Radar sensor

The primary function of automotive radar (example shown in Figure 1) is the detection of ob-
jects in the vehicle’s surroundings and estimation of their parameters such as distance, velocity
and direction. Based on this information, environment perception is enabled for higher level
functions such as advanced driver assistance systems and autonomous driving. The principle
behind radar is the transmission of electromagnetic waves that are reflected from the sur-
rounding objects called radar targets.

By reception and processing of the reflected radar signal, the presence of objects in the radar
surroundings is identified (detection) and their parameters are estimated. Radar conventionally
measures the target ranges (distances). Radar also enables measurement of targets’ relative
radial velocities based on the Doppler effect. To localise the radar targets, typically also estima-
tion of target directions (angles) is performed. For a three-dimensional (3D) target localisation,
along with the distances both the azimuth and elevation angles of the targets are required.

Radar uses the time-of-flight principle for distance measurement and the Doppler effect for ve-
locity measurement. For measurement of target directions, the Direction of Arrival (DOA) of the
reflected electromagnetic waves is estimated. This is typically performed by “scanning” all di-
rections based on the assumption that the antenna or the antenna array has a directive radia-
tion pattern, i.e. receives more power from a certain direction. This dominant direction of the
radiation pattern is called main beam. By pointing the main beam subsequently in each possible
direction (beamforming), the DOA with the maximum power can be identified. Assuming a sin-
gle main beam in the entire range of DOA from where the antenna is able to receive sufficient
power (i.e. no ambiguities called grating lobes), the beam with the highest power will point to
the DOA of the received signal. The narrower the main beam, the more precise DOA estimation
can be performed. Today’s automotive radars use digital beamforming in combination with
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Multiple-Input Multiple-Output (MIMO) radar architecture to determine the angular infor-
mation of the targets efficiently.

The target detection is performed on the range-Doppler radar spectra using Constant False
AlaRm (CFAR) detector. The detected radar targets are added to a radar point cloud, whereas
every point has its range, velocity, azimuth and elevation information, as well as its Radar Cross
Section (RCS), which is a metric for intensity of the reflected signal from the target. This 4D ra-
dar point cloud (3D coordinates and the velocity for every measured point) is fed to the percep-
tion module, which detects objects such as cars, pedestrians, cyclists, overridable and under-
ridable objects. This perception output is then fused with other modalities for higher level deci-
sion making.

A major strength of radar is the weather and light independence, due to which radar is robust
at night, under strong sun, in the presence of heavy rain, snow or fog. This makes radar a criti-
cal sensor modality for autonomous driving functions.

Figure 1: Waveye Argus A2 Lightweight Imaging Radar (LIR)

The parameters of Waveye’s Argus A2 imaging radar are presented in Table 1 for two range
configurations, mid and long range.

Table 1: Argus A2 imaging radar parameters

Parameter LIR Argus A2: Mid LIR Argus A2: Long
Range
Range 50m 200 m
Range resolution / range separability’ 4cm/8cm 15cm/30cm

Page 19 of 99

Co-funded by
the European Union



- o

A
AutoTRUST

D3.1 Multimodal data processing. v1

Parameter LIR Argus A2: Mid LIR Argus A2: Long

Range Range

Range accuracy’ 1.5cm 3cm

Velocity range’ (-20, +20) m/s (-100, +60) m/s
Velocity resolution / separability’ 0.03 m/s 0.07 m/s
Velocity accuracy’ 0.015 m/s 0.03 m/s

Azimuth Field of View (10 dB beam-
width)

(-55°, +55°)

(-55°, +55°)

Azimuth resolution? (native / algorith- 1.15°/0.55° 1.15°/0.55°
mic)
Azimuth accuracy? 3 0.1° 0.1°

Elevation Field of View (10 dB beam-
width)

(-17.5°, +17.5°)

(-17.5°, +17.5°)

Elevation resolution® (native / algorith- | 1.3°/ 0.65° 1.3°/0.65°
mic)

Elevation accuracy?? 0.1° 0.1°

Cycle time (update time)' 100 ms 70 ms

2.2 RGB sensor

The primary function of RGB cameras in automotive and public transport applications is the ac-
quisition of high-resolution visual data in the red, green, and blue spectral bands, enabling
dense spatial perception of the vehicle’s surroundings or interior environment. This modality
supports a range of higher-level functions such as activity monitoring, object recognition, and
event detection, which are critical for both safety and operational analytics.

The principle behind RGB imaging is passive sensing through the collection of ambient light re-
flected off surfaces in the scene. The camera sensor captures the intensity of light in three color
channels (red, green, blue), which are then combined to produce a full-color image approximat-
ing human visual perception. Unlike active sensing modalities (e.g., radar or LiDAR), RGB cam-
eras do not emit signals; instead, they rely on external illumination, which constrains perfor-
mance in low-light or adverse lighting conditions unless supported by infrared or auxiliary light-

ing.

From the captured image stream, spatial features such as edges, textures, and color gradients
are extracted and used to infer the presence, identity, and posture of objects and persons.
Modern vision-based systems utilise Convolutional Neural Networks (CNNs) or transformer-
based architectures to process RGB frames and perform tasks such as person detection, gesture
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recognition, and object classification. Temporal continuity in video data further enables motion-
based analytics, such as activity recognition or anomaly detection in dynamic scenes.

Camera-based perception provides dense 2D spatial resolution, allowing pixel-level segmenta-
tion and fine-grained interpretation of visual scenes. Unlike point cloud—based sensors, RGB
cameras do not inherently provide depth information, though stereo vision setups or fusion
with depth modalities (e.g., radar, LiDAR, or structured light) can compensate for this limitation.
The modality excels at capturing semantic information — including textual content (e.g., sign-
age), clothing color, and facial expressions — which are critical for applications involving human
monitoring and behavior understanding.

RGB cameras are sensitive to ambient conditions: performance can degrade under strong back-
lighting, glare, or at night. However, their passive nature and high information density make
them cost-effective and suitable for daytime surveillance tasks where visual context is essential.
In multimodal systems, RGB data is typically fused with geometric modalities to balance seman-
tic richness with spatial accuracy, contributing to a comprehensive perception stack for both
safety-critical functions and operational intelligence.

2.3 RGB+Depth

The Intel RealSense D435 as depicted in Figure 2 is an RGB-D camera designed to capture both
color and depth information simultaneously, making it suitable for 3D perception, gesture
recognition, and robotic navigation applications. Unlike conventional RGB cameras that provide
only 2D color images, this sensor combines a high-resolution RGB sensor with a stereo infrared
(IR) depth camera to generate real-time depth maps as shown in Figure 3.

The D435 integrates dual global-shutter IR cameras for depth sensing, along with a standard
RGB sensor, feeding data into an on-board processing pipeline that handles depth computation
and alignment. It outputs synchronized RGB and depth streams over a USB 3.0 interface, sup-
porting high frame rates and resolutions for accurate scene reconstruction.

Figure 2: Intel RealSense D435 camera
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DEPTH

Figure 3: Example RGB and Depth output from the D435

Key features include real-time depth perception, configurable depth range, advanced filtering
for noise reduction, and hardware acceleration for efficient processing. These capabilities allow
the sensor to accurately capture the 3D structure of environments, detect object positions, and
track motion, which is crucial in robotics, augmented reality, and interactive systems.

The camera can provide both raw depth data and pre-processed aligned RGB-D streams, offer-
ing flexibility for custom computer vision applications or immediate use in perception pipelines.
Its detailed specifications are summarised in Table 2.

Table 2: Intel RealSense D435 — Specifications

Feature Specification

RGB Sensor 1920 x 1080, 30 FPS
Depth Sensor Stereo IR, 1280 x 720, 30-90 FPS
Depth Range 0.1m-10m
Field of View RGB: 69° x 42°, Depth: 87° x 58°

Accuracy 2% atlm
Interface USB 3.0
Global Shutter Depth cameras: Yes

2.4 360 Fisheye Panoramic Camera

The Vivotek FE9180-H-V2 as shown in Figure 4 is a 360° fisheye panoramic camera designed to
capture a full, hemispherical view of the environment, making it ideal for surveillance, scene
monitoring, and immersive video applications. Unlike traditional fixed or PTZ cameras that pro-
vide limited fields of view, this camera employs a fisheye lens to deliver a complete panoramic
image without blind spots.

The FE9180-H-V2 integrates a high-resolution image sensor with advanced image processing
capabilities, allowing real-time video streaming with minimal distortion. The camera supports
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multiple viewing modes, including panoramic, dewarped, and quadrant views, which can be
configured either through hardware or software for specific monitoring needs.

Key features include high-definition video capture, low-light performance, Wide Dynamic Range
(WDR) for challenging lighting conditions, and H.265/H.264 video compression for efficient
network transmission. These capabilities enable continuous monitoring of large areas while
maintaining high image quality and reducing bandwidth usage.

The camera outputs video streams via standard IP interfaces and supports Power over Ethernet
(PoE), simplifying installation and integration into networked surveillance systems. Its flexibility
allows both real-time monitoring and recorded analysis of the environment.

Figure 4: Vivotek FE9180-H-V2 360° Fisheye Camera

2.5 LiDAR sensor

Light Detection and Ranging (LiDAR) sensors are essential components in modern perception
systems for autonomous vehicles, robotics, and advanced mapping applications. LiDAR oper-
ates by emitting rapid laser pulses and measuring the time it takes for each pulse to return after
reflecting off surrounding objects. This process enables the sensor to construct a detailed three-
dimensional (3D) representation of the environment, known as a point cloud. The spatial accu-
racy and reliability of LIDAR make it particularly valuable for applications that require precise
object detection, environmental mapping, and obstacle avoidance.

Despite their technical strengths, LIDAR sensors face a number of challenges that limit their
widespread adoption, particularly in cost-sensitive domains such as mass-market automotive
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deployment. A critical issue is the trade-off between resolution and cost. High-resolution LiDAR,
which can feature 64 or even 128 vertical channels, provides dense and rich 3D data that great-
ly improves perception accuracy. However, these high-end sensors remain prohibitively expen-
sive, which restricts their use to premium vehicles and research platforms. Conversely, low-
resolution LiDARs, often equipped with just 16 or 32 channels, are far more affordable and thus
suitable for broader deployment, but the resulting point clouds are much sparser. This sparsity
can lead to missed detections of small or distant objects, reduced scene understanding, and
difficulties in tasks such as object segmentation and SLAM. Moreover, the lower density of re-
turns in certain regions can exacerbate problems with occlusions and environmental ambigui-
ties. To overcome these limitations, there is a growing focus on LiDAR super-resolution meth-
ods that seek to reconstruct or enhance sparse point clouds using algorithmic or learning-based
approaches. These methods aim to bridge the gap between low-cost, low-resolution sensors
and the rich perception capabilities of high-end devices, thereby making advanced perception
solutions more accessible and scalable.

A representative example of a cost-effective LIDAR sensor is the Velodyne VLP-16, installed also
in AVISENSE.AI’s vehicle as depicted in Figure 5. This sensor offers a 360-degree horizontal field
of view and a vertical field of view of approximately 30 degrees, distributed across its 16 laser
channels. The VLP-16 can collect up to 300,000 points per second and provides reliable range
measurements up to 100 meters under ideal conditions. Its relatively low weight, compact size,
and reduced cost compared to higher-channel-count sensors have made it a popular choice for
autonomous vehicle prototypes, robotics platforms, and research applications that require
scalable LiDAR deployment.

Figure 5: The Velodyne VLP-16 LiDAR sensor, as deployed on AVISENSE vehicles, provides 360-degree environmental perception
with 16 vertical channels, enabling real-time 3D mapping and object detection.
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2.6 Microphone sensor array

The ReSpeaker Mic Array v2.0 as shown in Figure 6 is a microphone array sensor designed to
capture and process multi-directional sound in real time, making it suitable for voice-interactive
systems, audio localisation, and speech enhancement in noisy environments. Unlike traditional
single-channel microphones that capture omnidirectional audio without spatial context, this
sensor integrates four digital omnidirectional MEMS microphones arranged in a circular array.
Each microphone operates independently, feeding digital audio data into a centralised on-
board DSP (XMOS XVF-3000), which handles all signal processing locally.

The array outputs processed audio streams via a USB audio class interface and supports ad-
vanced features such as beamforming (directional audio focusing), Direction-of-Arrival (DoA)
estimation, Voice Activity Detection (VAD), Noise Suppression (NS), dereverberation, and
Acoustic Echo Cancellation (AEC). These capabilities allow it to isolate voice signals from multi-
ple speakers and filter out ambient noise or echoes — crucial in smart speaker, conference, or
robotic interaction systems.

This array responds in real time to changes in the acoustic environment, providing either a sin-
gle-channel enhanced audio stream or raw multi-channel microphone data. This allows for flex-
ibility in both pre-processed voice applications and custom audio signal analysis. Its specifica-
tions are presented in detail in Table 3.
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Table 3: ReSpeaker Mic Array V2.0 - Specifications

Feature \ Specification
Microphones 4 x ST MP34DTO1TR-M digital MEMS
Array Geometry Circular, 70 mm diameter
SNR ~ 63 dB
Frequency Response 100 Hz — 8 kHz
Maximum SPL ~120dB
Sampling rate Up to 16 kHz (via USB)
LEDs 12 RGB WS2812 LEDs, programmable
Audio Output 3.5 mm headphone jack (via WM8960 codec)

2.7 Event-Based camera sensor

An event-based camera (also known as a neuromorphic camera or dynamic vision sensor, DVS)
is a type of image sensor that captures changes in a scene asynchronously, rather than record-
ing full images at fixed intervals like traditional frame-based cameras. Each pixel in an event-
based camera operates independently. It monitors changes in brightness (logarithmic intensity)
and only sends data when it detects a change. This change is called an event. If nothing changes
in the scene at a particular pixel, that pixel remains silent. Instead of outputting full images, the
camera produces a stream of events in the form of (x,y,t,p), where x, y are the pixel coordi-
nates, t is the timestamp of the event (with microsecond resolution) and p, polarity of bright-
ness change (+1 for ON events, -1 for OFF events).

Figure 7: Prophesee's event-based sensor Evaluation Kit 3

In comparison with traditional RGB cameras, event-based sensors have high temporal resolu-
tion and low power consumption, due to sparse, asynchronous data output. Additionally, since
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each pixel only emits events when brightness changes, static background regions (e.g., a wall,
ground, or sky) do not generate events. This significantly reduces the amount of data related to
unchanging parts of the scene.

Due to their ability of filtering out static or irrelevant background information, event-based
cameras are especially valuable in tasks, such as Human Activity Recognition, the pose of hu-
man actions in dynamic environments is crucial. In order to capture event data, Prophesee’s
fourth-generation sensor as illustrated in Figure 7, EVK3, was selected, with a resolution of
1280 x 720 pixels. The sensor ensures that the diffraction patterns are recorded in real-time,
offering detailed visualisation without the limitations of traditional frame-based cameras. The
camera has a pixel size of 6.3 um, a dynamic range exceeding 140 dB and operates with laten-
cies below 150 pus.

2.8 Sensor calibration

This section describes the calibration methods that can be used for the cameras sensors in or-
der to optimise their operation. These methods ensure accurate measurements and provide a
reliable foundation for subsequent temporal and spatial registration.

2.8.1 Event-based sensor calibration

The settings of the event-based camera are fine-tuned in order to reduce the noise generated
by unwanted events (the final values for each bias setting are presented in Table 4). We achieve
that by increasing the threshold after which an event occurs and adding a high pass filter to re-
move the static noise. These configurations help later in the sampling of the dataset and in the
training process of the model.

Table 4: Event-based sensor biases settings

Bias \ Description Value

bias diff off Adjusts the contrast threshold 40
for OFF events

bias diff on Adjusts the contrast threshold 135
for ON events

bias fo Adjusts the low-pass filter 74

bias hpf Adjusts the high-pass filter 62

bias refr Adjusts the refractory period 68

2.8.2 Fisheye Camera Calibration Using a Chessboard

Fisheye lenses capture images with a very wide field of view, often greater than 180°, but intro-
duce significant non-linear radial distortion. Accurate calibration of fisheye cameras is neces-
sary to estimate intrinsic parameters and distortion coefficients, enabling geometric correction
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of images for precise computer vision tasks. A planar chessboard pattern with known dimen-

sions is commonly used as a calibration target due to its regular, high-contrast feature points.
Camera Model and Distortion

For fisheye cameras, the projection model deviates from the classical pinhole camera. The
equidistant projection model is widely adopted, where the radial distance r in the image plane
relates linearly to the angle 8 between the incoming light ray and the optical axis:

r=f-8 Equation 1

where f is the focal length in pixels and 0 is the angle of incidence, respectively.

To model the lens distortion, the distorted angle 8, is represented as a polynomial function of
the undistorted angle 6:

0s =01+ (k0% + k,0* + k30° + k,0°) Equation 2

where, kq, k,, k3, k, are the distortion coefficients, respectively.

Normalized image coordinates x,y (obtained by dividing the 3D point coordinates by the
depth) are projected to distorted image coordinates x4, y; as:

x .
Xy =f, = 0, +c, Equation 3

y Equation 4
yd:fy';'ed'i'cy 9

where f,, f, are focal lengths in pixels, and cy, ¢, represent the principal point coordinates, re-
spectively.

Calibration Methodology

Data Acquisition
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A planar chessboard pattern with a known square size is used as the calibration target. Multiple
images are captured from different angles and distances to provide diverse perspectives of the
pattern.

Feature Extraction

For each captured image, the 2D image coordinates of the internal chessboard corners are de-
tected with sub-pixel accuracy. These points correspond to known 3D positions on the calibra-
tion target.

Object Points Definition

The 3D coordinates of the chessboard corners are defined on a plane (typically Z=0):

X; = (i-s,j-s,0) Equation 5

where s is the square size, and i, j index the corner positions, respectively.
Parameter Estimation

Using the correspondences between detected 2D image points and known 3D object points, the
intrinsic camera matrix K, distortion coefficients D\mathbf{D}D, and the extrinsic parameters
(rotation R; and translation t; for each image) are estimated.

The goal is to minimize the total reprojection error:

N M
Z lexu — (K, D, Ryt X;)|| Equation 6
i=1j=1

J
where:
e N isthe number of images,
e M is the number of corners per image,
e X;; is the observed 2D corner location in image iii,
e 1 (-) represents the fisheye projection function with distortion,
e K contains focal lengths and principal point,

e D =k, ky, ks, k, are distortion coefficients,
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e R;,t; represent the camera pose in image iii, respectively
Non-linear optimisation techniques are applied to find the parameter set minimizing this error.
Image Undistortion

With the calibration parameters estimated, fisheye images can be undistorted by applying the
inverse of the distortion model. This process maps each pixel from the distorted image to a cor-
rected location, producing rectified images suitable for downstream vision tasks.

Chessboard-based calibration provides a practical and accurate method for estimating the in-
trinsic parameters and distortion coefficients of fisheye cameras. By modelling the nonlinear
projection and distortion, this process enables effective correction of fisheye images, facilitating
their use in precise computer vision applications for in-cabin monitoring.

2.9 Concluding remarks

The sensor suite described in this section establishes the hardware foundation for AutoTRUST’s
multimodal perception capabilities. Each sensor modality offers unique strengths, i.e., LiDAR for
accurate 3D mapping, radar for robustness in adverse conditions, RGB and event-based camer-
as for rich semantic information, and microphones for acoustic scene understanding. The cali-
bration and synchronisation techniques presented ensure spatial and temporal alignment
across modalities, enabling effective downstream fusion and analytics. These preparations are
critical for achieving reliable, real-time performance in both external and internal perception
pipelines. The next sections build upon this hardware foundation by introducing advanced algo-
rithms for external and internal sensor data processing and multimodal enhancement.
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3 Algorithms for external multi-modal sensor data pro-
cessing and enhancement

This section presents the core algorithms developed for processing and enhancing data from
external sensor modalities, specifically focusing on LiDAR and radar as active sensors. The focus
is on enabling accurate perception and localisation through cost-effective and scalable methods
that operate in real-time. Key contributions include deep learning—based LiDAR super-
resolution for SLAM and segmentation, advanced radar-based environment perception pipe-
lines, and federated localisation using GNSS and vehicle odometry. These algorithms are de-
signed to function independently or as part of the external monitoring system, providing robust
performance in complex and dynamic driving environments.

3.1 LiDAR-based data enhancement for improved perception

This section describes the use of LIDAR for both improved SLAM and object segmentation.

3.1.1 LiDAR super-resolution for Improved SLAM

LiDAR SLAM is essential for autonomous vehicles and robotics, enabling self-localisation and
environmental mapping. Compared to visual SLAM, LiDAR-based methods offer superior relia-
bility in low-light or low-visibility conditions. However, high-resolution LiDAR sensors are costly,
making them impractical for many applications. While 64-channel LiDAR provides superior ac-
curacy, lower-cost 16-channel sensors produce sparser point clouds, leading to reduced odom-
etry accuracy, increased drift, and degraded SLAM performance [1].

Inevitably, research has focused on enhancing the resolution of low-cost LiDAR sensors to
bridge the performance gap with high-resolution counterparts. This upsampling can be
achieved through Super-Resolution (SR) techniques, which refine low-resolution LiDAR data by
reconstructing missing details and increasing spatial density. However, most SR approaches fail
to account for their impact on SLAM accuracy [2]. These methods typically process either raw
3D point clouds [3] or 2D range images [4] derived from LiDAR scans, yet they introduce several
critical limitations that hinder their effectiveness in real-world SLAM applications. Deep learn-
ing-based SR algorithms outperform traditional interpolation methods but rely on complex ar-
chitectures with numerous learnable parameters [4]. Their high computational complexity lim-
its frame rates, making real-time processing impractical for SLAM applications. Additionally,
these methods operate independently of SLAM optimisation, leading to inconsistent high-
resolution reconstructions and artifacts that propagate errors in the SLAM pipeline. Many SR
techniques also introduce outliers, further degrading SLAM accuracy and requiring costly post-
processing, preventing real-time execution, resulting in an end-to-end real-time pipeline with
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improved accuracy. By leveraging the DU framework, we reformulate a novel optimisation
problem into an efficient deep learning architecture, thus resulting in an improved end-to-end
SR and SLAM approach.

3.1.2 Preliminaries
LiDAR-based Super-Resolution

LiDAR Super-Resolution (SR) techniques can generally be classified into two main approaches.
The first category focuses on performing SR directly on raw 3D LiDAR point clouds. However,
these methods require substantial computational resources to identify neighboring point rela-
tionships and often necessitate additional processing steps, such as segmentation, due to the
inherent sparsity of 3D point clouds [5]. An alternative approach operates in the range image
domain by projecting 3D point clouds onto 2D range images [4]. This representation offers a
more compact format, effectively mitigating data sparsity issues. However, these methods typi-
cally rely on deep learning architectures with a large number of parameters, such as U-Net-
based [6]. Despite their potential, the computational demands of these models, combined with
the need for post-processing to remove outliers, pose significant challenges for real-time im-
plementation. The high complexity of inference, along with the additional processing overhead,
often results in suboptimal frame rates, limiting their applicability in real-world SLAM.

3.1.3 Proposed Methodology

In this section, the basic SR LiDAR optimisation problem is formulated by developing a model-
based deep learning network to tackle the LiDAR SR problem, and integrating the SR method
into an end-to-end LiDAR SLAM architecture.

Optimisation Problem

To construct the proposed model-based deep learning architecture, we leverage the ad-
vantages of projection-based methodologies. Let §1 represent a high-resolution LiDAR sensor
with Nychannels e.g., 64, and S, a low-resolution LiDAR sensor with N, channels e.g., 16,
where N{,N, €Z and N; > N,. We project the 3D high-resolution point cloud P, obtained
from §4, into a high-resolution range image H € RN1*X, where K represents the horizontal
resolution of the sensor. If L € RN2*K denotes the range image produced by the low-
resolution 16-channel LiDAR sensor, the transformation between the two range images i.e., the
low-resolution and high-resolution image can be described by the following mathematical rela-
tionship:
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L=DH+E Equation 7

where D € R¥2*N1 denotes the downsampling operator that selects only the N, channels from
the high-resolution range image and E is a noise term. Our goal is to upscale the quality of the
resolution of the point cloud generated from the low-resolution sensor. To achieve this, we
formulate an optimisation problem as:

1 .
argminz IL — DH||%2 + uJ(H) Equation 8
H

where the first component ensures consistency with the degradation model defined in Equa-
tion 7. The second component J(.) serves as a learnable regularizer, designed to capture the
intrinsic features of the high-resolution range image H, and p is the regularization parameter.
However, the above formulation of method still faces challenges in ensuring real-time perfor-
mance, as the learnable regularizer, which aims to capture the intrinsic properties of range im-
ages, relies on 2D convolutions. These convolutions, while effective in learning spatial patterns,
do not inherently preserve the 3D geometric consistency of the original LiDAR point cloud. As a
result, they often introduce outliers, particularly in regions with depth discontinuities, sharp
edges, or occlusions. These artifacts often appear as spurious points in free-space regions or
distortions along object boundaries, significantly affecting downstream SLAM tasks. To restore
consistency, additional post-processing steps are often required to handle outliers. However,
these steps increase computational overhead, restricting real-time performance and making
the approach impractical for autonomous navigation.

To overcome this, we introduce a novel regularization term that simultaneously preserves
structural consistency and removes outliers within the optimisation process. By integrating the
outlier removal process directly into the optimisation framework, we eliminate the need for
explicit post-processing while simultaneously enhancing the effectiveness of the learnable regu-
larizer J(.). Since J(.) is trained jointly with the outlier removal module, it can learn to better
capture the structural properties of the high-resolution range image while being aware of the
effects of outlier suppression. This synergistic optimisation leads to more accurate and stable
SR outputs, ultimately improving LiDAR SLAM performance. Thus, we propose a novel optimisa-
tion problem, defined as:
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1 .
argminz IL — DH||%2 + w/(H) + AQ(H) Equation 9
H

where the term Q(.) represents an outlier removal regularizer. This module guides the solution
toward generating geometrically consistent high-resolution range images.

Model-based deep learning SR: To address the proposed optimisation problem in Equation 9,
we utilise the Half quadratic splitting (HQS) methodology to decompose the initial problem into
more manageable subproblems. Hence, the initial problem can be reformulated as:

where Z € RV1XK |y € RN1*K gre uxiliary variables. The loss function that HQS seeks to mini-
mize is:

1 b
— — 2 — — 2
L =ZIIL = DHIIE + 1 (2) + 20(Y) + 5 11Z - HIIZ Equation 10

b
+31lY = HIE

where b denotes a penalty parameter. Based on Equation 10 the sequence of individual sub-
problems emerges:

HOD = argmin = |L — DH®|% + b |20 — H®)||”

H 2 Fo2 F Data consistency
b 2
+ 37 - B

b
204D = argmin ) (2) + 5 [|Z — HO*D I’ Denoising
Zz

b
Y*+D = argmin 1Q(Y) + 5 |y — B¢V ||i Outlier removal
Y
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Data consistency Module: This subproblem takes the form of a quadratic regularized least

squares problem, which can be solved as:

Equation 11
H®D = (DTD + 2bD)7Y(DTY + bZ™® + py®)

Denoising Module: The denoising module refines the range image by processing the output re-
ceived from the data consistency module as shown in Equation 11. This refinement step can be
implemented using a deep learning-based denoising network that functions as follows:

Z(+1) — Go (H(k+1)) Equation 12

where Gg denotes the denoising neural network that learns to identify and preserve the essen-
tial characteristics of range images, effectively serving as a learned prior.

The network architecture follows a U-shaped autoencoder design, where the encoder uses 2D
convolutional layers to downsample the input, while the decoder employs deconvolutional lay-
ers to perform upsampling. However, since it relies on 2D convolutions, it does not inherently
preserve 3D geometric consistency, leading to outliers, particularly in regions with depth dis-
continuities, sharp edges, or occlusions. These artifacts manifest as spurious points and bound-
ary distortions, which negatively impact SLAM performance. To mitigate this issue, we intro-
duce an outlier removal module, described in the following, which ensures the structural integ-
rity of the estimated range image while maintaining real-time performance.

Model-based LiIDAR super-resolution
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Figure 8: The proposed end-to-end Super-LiDAR-SLAM architecture. The pipeline starts with a low-resolution point cloud cap-
tured by a low resolution LiDAR sensor, which is projected into a 2D range image. The 2D range image is then upscaled using the
SR module.
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Outlier Removal: This module eliminates outliers introduced by the denoising process, refining
the estimated range image. The solution corresponds to the proximal operator of the regulariz-
er Q. Instead of using a neural network, we adopt a cluster-based algorithm that operates
without learnable parameters. The algorithm processes the structured 2D range image using
Breadth-First Search (BFS) to label connected components [7]. It scans the image sequentially,
starting from the top-left corner, and initiates BFS for each unlabeled pixel. A neighboring pixel
is added to the BFS queue based on a criterion involving range measurements r; and r, at
points p; and p, measured by a sensor at s. The connectivity angle a, is:

llsp: |l sin a, ) Equation 13

a, = arctan
<||SP1|| — |Ispzll cos a;

where a, is the known angle between laser beams. A threshold 8 determines connectivity: if
a, < 8, the points are in separate clusters due to a significant depth change; otherwise, they
belong to the same object. This heuristic yet effective method efficiently segments range imag-
es, improving SLAM performance. Final iterative solutions: Hence, the HQS solver consists of
three interpretable modules that are the data consistency solution for estimating the high-
resolution range image Equation 14, the denoising step in Equation 15 and the outlier removal
submodule Equation 16.

H(k+1) — (DTD + bI)—l (DTY + b(z(k) 4+ Y(k))) Equation 14
Z(e+1) — Gg(H(k“)) Equation 15
yGk+D) — QQ(H(k+1)) Equation 16

Model-based SR network: The learnable components within the denoiser enable us to trans-
form the context-aware optimisation problem into an efficient and interpretable deep learning
architecture based on established mathematical principles. We accomplish this by implement-
ing the deep unrolling framework. Instead of executing numerous iterations of the HQS solver,
we unroll a limited number K of iterations, with each iteration functioning as a distinct layer in
the resulting deep network. This creates a K-layer neural network where each layer maps di-
rectly to one HQS iteration, creating an optimal balance between computational efficiency, and
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model interpretability.

End-to-End Architecture: SR-LeGO-LOAM

Having designed the proposed model-based Super-Resolution (SR) network, we now introduce
the complete end-to-end architecture, as illustrated in Figure 8. The proposed architecture ex-
tends the Lightweight and Ground-Optimised Lidar Odometry and Mapping on Variable Terrain
(LeGO-LOAM) framework by integrating the proposed SR model. The objective of this imple-
mentation is to incorporate SR functionality while maintaining the real-time performance of the
algorithm. The pipeline begins with a sparse point cloud generated by a low resolution LiDAR
sensor, which is transformed into a low-resolution range image. The 2D range image is then up-
scaled using the SR module, that consists of two denoising processes i.e., the autoencoder de-
noiser Equation 15 that aims to refines the output of the data-consistency module Equation 14
and the outlier removal module to filter spurious points Equation 16. The remaining steps of
the pipeline follow the standard LeGO-LOAM SLAM process.

3.1.4 Numerical Results

Simulation setup

We utilised the ouster LiDAR dataset!, which captures a 15-minute drive through San Francisco
using an 0S-1-64 3D LiDAR sensor. The 64-channel LiDAR point clouds were projected into high-
resolution range images of size 64 x 1024 as ground truth, while low-resolution images were
generated by extracting 16 out of the 64 channels. During training, we used the AdamW opti-
mizer [1] with PyTorch’s default settings and unrolled the HQS solver for k = 5 iterations, form-
ing a 5-layer deep learning architecture. The model was implemented in C++ and integrated in-
to the LeGO-LOAM pipeline as a preprocessing step, consistently operating in the 2D image
domain. It was tested on an RTX 2080 Ti GPU.

Table 5: Absolute Pose Error (RMSE) w.r.t. translation part (m), FPS, and Number of Parameters

RMSE [m] Parameters
LiDAR-16 11.58 / 6717 - -
SRAE 5.53/67.35 5 35M
Simple DU 3.78/31.71 5 0.IM
VIT 3.58/28.64 1 50M
DU-OR (ours) 2.35/22.64 400 0.2M
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Evaluation study

In this section, we present the evaluation results of the proposed SR module with outlier re-
moval using the ouster dataset, which consists of two sequences: a complex 8,000-scan se-
guence and a smaller 4,000-scan sequence, each sub-sampled to 16 channels. We compare our
method Deep Unrolling with Outlier Removal (DU-OR) against state-of-the-art SR LiDAR tech-
niques, including the Super-Resolution AutoEncoder (SRAE) [4], a simple Deep Unrolling (simple
DU) SR method [9], and a VlIsion Transformer-based (VIT) approach [6]. These methods take the
down-sampled ouster sequences as input and generate high-resolution 64-channel scans, act-
ing as a preprocessing step for upscaling low-resolution LiDAR data, which are then used as in-
put to the LeGO-LOAM SLAM pipeline.

Additionally, we also evaluate LeGO-LOAM performance by directly feeding the low-resolution
scans (LiDAR-16) without any processing. As a metric, we use the Absolute Pose Error (APE),
with the ground truth being the LeGO-LOAM output using the original 64-channel LiDAR. We
also report the execution time for each SR technique and the network size in terms of the num-
ber of parameters. Table 5 presents the RMSE values for both sequences in a single column,
with the results for the 4,000-scan sequence listed first, followed by those for the 8,000-scan
sequence, separated by a slash. Figure 9 further illustrates these results through heatmaps for
the DU-OR method, the 16-channel LiDAR, and the Transformer-based baseline, using the Li-
DAR-64 trajectory as reference.

The results highlight the limitations of the 16-channel LiDAR, with an APE RMSE of 11.58m for
4,000 scans, which sharply increases to 6,717m for 8,000 scans, demonstrating the challenges
of low-resolution data in complex environments due to the sparsity of point clouds. The pro-
posed DU-OR method consistently outperforms all tested SR approaches, achieving APE RMSE
reductions ranging from 34% to 58% for 4,000 scans and 20% to 66% for 8,000 scans. Beyond
accuracy, DU-OR excels in real-time performance, achieving 400 fps, compared to 5 fps for SR-
AE and 1 fps for VIT, while containing 99% less parameters. The slower speeds of SR-AE and VIT
methods result from Monte Carlo-based inference, requiring multiple evaluations per point
cloud. In contrast, DU efficiently captures LiDAR structures, reconstructing high-resolution point
clouds with a single inference, making it ideal for real-time autonomous applications.

Overall, this section presents a DU-based SR model with an integrated outlier removal module
to enhance the accuracy and efficiency of low-resolution LiDAR sensors for SLAM applications.
By leveraging a model-based optimisation approach, our method reconstructs high-resolution
point clouds while maintaining real-time performance. The proposed SR model was integrated
and evaluated within a state-of-the-art LiDAR SLAM framework, demonstrating significant im-
provements in pose estimation accuracy and efficiency over existing SR methods. These find-
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ings highlight the effectiveness of outlier-aware Super-Resolution in improving SLAM perfor-
mance and its potential extension to other research areas such as object detection.

(a) proposed DU heatmap (b) LiDAR-16 heatmap

7.686
APE WL trarkition pant |
{with SEL3| Uneyama akgrment

(¢) VIT [25] heatmap

Figure 9: Heatmaps for the proposed DU, the 16-channel LiDAR and the Transformer based method using as reference trajectory
the path derived from the LiDAR-64.

3.1.5 LiDAR super-resolution for Improved Segmentation

Although recent works have increasingly focused on enhancing the resolution of low-cost LiDAR
sensors to achieve performance comparable to high-resolution counterparts, existing Super-
Resolution (SR) approaches do not explore their impact on perception tasks, such as segmenta-
tion [6]. Additionally, these methods operate independently of perception tasks e.g., the seg-
mentation, meaning that the training of SR networks is not influenced by the segmentation
process. This independent optimisation approach creates additional challenges when the SR
network’s output is used as input to a separately trained segmentation network. As a result, the
SR methods often produce outputs containing high level of outliers, which heavily degrade
segmentation performance. Also, the aforementioned methods fail to preserve details about
smaller classes, since the SR process inherently put more emphasis on dominant categories
(e.g., buildings). Consequently, the sparse representations of minority classes become distort-
ed, degrading segmentation performance. Hence, optimizing the SR and segmentation net-
works separately leads to a significant decline in segmentation accuracy, demonstrating the ne-
cessity of a joint optimisation approach within an end-to-end framework. Nevertheless, to
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achieve a resource-efficient end-to-end architecture, the SR model should be as lightweight as
possible to avoid adding computational complexity to the segmentation process. To be more
detailed, based on a novel optimisation problem, we design a resource efficient model-based
SR network utilizing the deep unrolling strategy [10]. The resulting SR model can be integrated
with the segmentation network within a unified system. By jointly optimizing the SR and seg-
mentation net- works during the training phase, the SR model-based network effectively pre-
serves critical contextual details required for accurate segmentation by incorporating semantic
information provided by the segmentation network. To the best of our knowledge, this is the
first study to propose such an end-to-end framework.

3.1.6 Related Work
LiDAR-based Segmentation

Segmentation methods have been developed, typically categorized into point-based, voxel-
based, and projection-based approaches. Point-based methods process raw 3D points directly,
preserving spatial structure without transformation of the points utilizing deformable convolu-
tions with an arbitrary number of kernel points to capture local geometric structures [11].
Voxel-based methods tackle the irregularity of 3D point clouds by discretizing the space into
uniform voxel grids, allowing for the use of convolutional operations to predict semantic labels
[12]. Despite these improvements, voxel-based and point-based methods still suffer from the
sparsity of point clouds, leading to redundant calculations and high memory consumption. Pro-
jection-based methods transform 3D point clouds into 2D image representations, enabling the
use of advanced image feature extraction techniques for semantic segmentation [13]. Methods
such as FIDNet [14] and CENet [15] enhance segmentation performance by using ResNet-based
encoders and simplifying decoders with interpolation techniques. Similarly, LENet [13], which is
a lighweight version of CENet, achieves state-of-the-art results by integrating the Multi-Scale
Context Aggregation (MSCA) and Inter-scale Attention Calibration (IAC) modules, which boost
the overall performance.

Backbone Segmentation Architecture
Considering computational efficiency and state-of-the-art performance in the 3D segmentation

problem, we will focus on projection-based methods operating in the 2D range image domain.
In light of this fact, we adopt LENet, as the backbone segmentation network for the proposed
end-to-end architecture. In more detail, LENet integrates a multi-scale convolution attention
(MSCA) module within its encoder and a lightweight Interpolation And Convolution (IAC) de-
coder for efficient processing of LIDAR data. The MSCA module consists of three main compo-
nents: a depth-wise convolution for local information aggregation, multi-branch depth-wise
strip convolutions for capturing multi-scale context, and a 1 X 1 convolution to model inter-
channel relationships. The output of the 1 X 1 convolution acts as attention weights, refining
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the input features for enhanced representation. The encoder building block consists of a 3 X 3
convolution layer followed by the MSCA module. For decoding, LENet incorporates an IAC
module, which employs bilinear interpolation for upsampling feature maps from the encoder, a
3 X 3 convolution to merge information from the encoder and previous IAC stages, and a point-
wise convolution to fuse the outputs of the last three IAC modules. The complete encoder-
decoder architecture is illustrated in Figure 10.

Guided - Model-based LiDAR super-resolution
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Figure 10: lllustration of the key components of the proposed end-to-end architecture. (a) Segmentation network: The segmen-
tation network employs a hierarchical backbone structure inspired by ResNet34. Its architecture incorporates the IAC module,
which progressively upsamples low-resolution feature maps to their original dimensions while integrating outputs from preced-
ing IAC modules. (b) Guided Model-based SR network: A small number of iterations of the solver in are unrolled and treated as a
deep learning architecture, consisting of the data-consistency solution Equation 29, the denoiser Equation 30 and the segmenta-
tion-guided regularization using the learnable mask Equation 31. (c) Overall end-to-end architecture: A 16-channel LiDAR point
cloud is converted into a low-resolution range image, processed by the SR network to generate a high-resolution range image.
This high-resolution output is fed into the segmentation network for final 3D segmentation. By jointly optimizing the SR and
segmentation networks, the SR process benefits from critical semantic guidance, thus enhancing the segmentation performance

3.1.7 Proposed Methodology

In this section, we present the proposed end-to-end architecture.
Guided Model-based SR

To construct the proposed model-based deep learning architecture, we leverage the ad-
vantages of projection-based methodologies. Specifically, we project the 3D high-resolution
point cloud P obtained from a 64-channel LiDAR sensor, into a high-resolution range image T €
RN 'In view of this, the high-resolution data and the low-resolution data sensor are connect-

ed as follows:
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S=DT+E Equation 17

where D € R16%6* is the downsampling operator that selects the 16 channels from the high
resolution range image and E is a term, respectively. A simple optimisation to enhance the res-
olution of the range image is:

1 :
argminz IS — DT||2 + pJ(T) Equation 18
T

where the first component ensures consistency with the degradation model defined in Equa-
tion 18. The second component J(.) serves as a learnable regularizer, designed to capture the
intrinsic features of the high-resolution range image T.

However, the above formulation remains agnostic to segmentation problem, resulting in a lack
of influence from the segmentation results during the training and operational phase. This limi-
tation can lead to the loss of structural details for smaller or underrepresented classes. To ad-
dress this limitation, we introduce an additional regularization term in the optimisation prob-
lem that leverages a learnable mask to guide the super-resolution process. This learnable mask
is trained using the ground truth segmentation masks during training, ensuring a focus on re-
gions associated with underrepresented classes. The segmentation-guided optimisation prob-
lem is defined as:

1 .
argminz IS — DT||2 + wJ(T) + A0(T) Equation 19
T

where Q(.) represents an extra regularizer that guides the estimated high-resolution output to
preserve the structure of the classes of interest for the segmentation task.

To tackle the proposed optimisation problem in Equation 19, we employ the Half Quadratic
Splitting (HQS) methodology. The problem can be reformulated as follows:
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1
argmin = [|S — DT + p (T) + 20(Y)
T
st. T=ZT=Y

Equation 20

where Z € RO**N Y € R®**N gre auxiliary variables. The loss function that HQS aims to min-
imize is:

1 b
— _ _ 2 - _ 2
L =5IS = DTI} + W (2) + 20(¥) +5 112 = TII3 Fquation 21

b 2
+ 5 Y —Tllz

where b denotes a penalty parameter. Based on Equation 21 a sequence of individual sub-
problems emerges, that are analysed in the following:

1
T*+D = argmin= ||§ — DT("‘)”2 + b |z — T(k)”2 Equation 22
T 2 B2 F

b 2
+3 v -1

b ) Equation 23
ZU+D = argmin uJ (Z) + > |z — T¢+D]|7
z
b ) Equation 24
YD = argmin 2Q(¥) + 5 [[Y — TU* D[
Y
Data consistency Module: The closed form solution is given as:
T4+ = (D™D + 2b1)1(DTY + bZ® + by ®) Equation 25

Denoising Module: The purpose of the denoising module is to produce a refined range image
by taking as input the estimated range image from the data consistency module in Equation 25.
Thereby, this step can be implemented using a deep learning-based denoiser as follows:
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70+ = G (T(k+1)) Equation 26

where G4 denotes the neural network responsible for denoising. For the architecture of the
deep learning-based denoiser, we draw inspiration from the LENet segmentation network, as
illustrated in Figure 10.

Segmentation Guidance: Although this subproblem originally involves the variables Y and T, we
substitute T with Z, which represents the denoised version of T obtained from the previous
step. This substitution provides a cleaner and more precise representation. The solution of this
problem can be replaced again with a learnable function. To this end, we introduce a learnable
mask Q, (+) to incorporate segmentation guidance across both the training and inference phas-
es, based on the solution Z**D from Equation 26. During training, the segmentation mask de-
rived from the ground truth (Mgr) supervises the learning of Q, (+), ensuring accurate segmen-
tation guidance. The loss for the learnable mask is:

1 N Equation 27
Lnasc =37 2[5 (2470 = ey Mer (D]
j=1

where N is the number of pixels, Z(*D js the input at iteration k + 1, and Mg is the ground
truth segmentation mask. The c(j) is class label of pixel j, as indicated by the segmentation

mask Mgt. The weight w,(;y = ’fi, derived from the class frequency f,(;), ensures higher
20)

emphasis on underrepresented classes. During inference, where Mgt is unavailable, the
learned neural network Qe(') generates the mask based on the input Z®**1 with dimension
64 x 1024. This estimated mask is then used to enhance context-awareness by applying a pix-
el-wise multiplication with Z&**1, ensuring that segmentation guidance is explicitly incorpo-
rated. The updated subproblem is formulated as:

yk+1) — Qo (Z(k+1)) O ZKk+D) Equation 28

Final Iterative solutions: Hence, the HQS solver consists of three modules that is the data con-
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sistency solution for estimating the high-resolution range image Equation 29, the denoising step
in Equation 30 and the learnable segmentation mask that guides the output to preserve critical
structure details Equation 31.

Equation 29

TU+D) = (DTD + pI)~! (DTS +b(2® + Y(k))) q
Z(+1) — Gy (T("+1)) Equation 30
Equation 31

y(k+1) — QG(Z(k+1)) @ Z(k+1)

Since the denoiser contains learnable parameters, the solutions of the proposed optimisation
problem can be reformulated into a computationally efficient architecture. To achieve this, we
adopt the Deep Unrolling (DU) framework. We unroll only K iterations and treat each one as a
single layer in the resulting deep learning model. The proposed model-based SR network is il-
lustrated in Figure 10 along with the overall end-to-end architecture that we analyse in the next
Section.

End-to-End Architecture

Having designed the proposed model-based SR network with low computational complexity, we
now introduce the complete end-to-end architecture, as illustrated in Figure 10. The process
begins with a low-resolution point cloud captured by a 16-channel LiDAR sensor, which is con-
verted into a low- resolution range image. This range image is then fed into the model-based SR
network, to generate a high-resolution range image. The high-resolution range image is subse-
guently passed to the segmentation network for final 3D semantic segmentation. By jointly op-
timizing the SR and segmentation networks, the end-to-end architecture incorporates semantic
context into the SR process, enhancing the quality of the super-resolved data.

A key element of the proposed architecture is the end-to-end training of the SR and segmen-
tation networks.

Context-Aware LiDAR Loss: To enhance the ability of the SR network to preserve the struc-
ture of smaller classes, we introduce a context-aware loss function. This loss function lever-
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ages the ground truth segmentation masks to guide the SR model’s focus, defined as:

PN
Ly, = Z Z Weiy ” (Yi(K+1) (j)) ~T,(j) ”1 Equation 32

i=1 j=1
where p denotes the number of range images and N the number of pixels per image. The

weight w(;y is defined similar to eEquation 27. Yi(K“)(j) is the predicted pixel j in the i-th
image, while T;(j) is the real value.

Segmentation Loss: A cross-entropy loss L,,.. is employed defined as:

Lyce(, ) = — 2 a; -p(y) log(p(®)) Equation 33

l

where y; and J; represent the ground truth and predicted class labels, respectively. The to-
tal loss is given by:

Equation 34
L =wiLyce + Wolis + Wil + Wolygsr q

where L,,,s is defined in Equation 27, the wy, w,, and w5 are weights set empirically to
w; =1, w, = 1.5 and w3, w, = 1, respectively.

3.1.8 Numerical results

Simulation setup

Dataset: We utilise two widely used LiDAR segmentation benchmarks: the SemanticKITTI da-
taset [16] and the SemanticPOSS dataset [17]. SemanticKITTI is a large- scale dataset collected
using the Velodyne HDL-64E LiDAR sensor, specifically designed for point cloud segmentation in
autonomous driving scenarios. It is split into three subsets: sequences 00—-04 for training, se-
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guence 05 for validation, and sequences 06—08 for testing. SemanticPOSS, uses a PANDORA 40
channel LiDAR sensor. For SemanticKITTI, we project point clouds from the 64-channel sensor
into high- resolution range images of size 64 X 1024, which serve as ground truth. Correspond-
ing low-resolution range images of size 16 X 1024 are generated by selecting 16 out of the 64
channels, simulating data from a low-cost 16-channel LiDAR. A similar process is applied to the
SemanticPOSS dataset, producing high-resolution range images of size 40 X 1024 and low-
resolution versions of size 10 X 1024.

Implementations Details: For the proposed model-based SR network, we unroll the derived
HQS solver in Equation 29-Equation 31 for k = 4 iterations, resulting in a 4-layer deep learning
architecture. In the end-to-end framework, we use the AdamW optimizer with default optimiz-
er with default PyTorch settings. The initial learning 2 X 10~3 and dynamically adjusted using a
cosine annealing scheduler over 80 epochs. Also, we utilise the mean Intersection over Union
(mloU) metric to evaluate the performance. Finally, all experiments were conducted on an
NVIDIA RTX 4090 GPU.

Evaluation study
Table 6 and

Table 7 show the quantitative results on the SemanticKITTI and SemanticPOSS benchmarks for
the LeNET segmentation network across different configurations: using the high-resolution Li-
DAR sensor, the low-resolution LiDAR sensor, the state-of-the-art (SOTA) Transformer-based
LiDAR SR method combined with the LeNET segmentation net- work, and the proposed end-to-
end architecture.

(a) Impact of Resolution on Segmentation performance: The results in Table 6 and

Table 7 clearly demonstrate how LiDAR resolution significantly influences segmentation per-
formance. Using low-resolution LiDAR data leads to a noticeable decline in segmentation accu-
racy. The reduced point density in the low-resolution data results in poorer segmentation. For
example, in KITTI dataset [2] the bicycle class shows a substantial drop of 66%, while the person
class experiences a significant decrease of 74%.

(b) Independent Training with SOTA Transformer-Based SR [6]: This scenario utilises a SOTA
LiDAR SR model based on the Swin Transformer architecture, independently trained alongside
the segmentation network. The results indicate that while this framework improves segmenta-
tion performance for dominant classes, such as cars, it fails to deliver similar benefits for small-
er classes like bicycles. The SR model struggles to reconstruct key regions necessary for accu-
rate segmentation of these smaller classes, as the lack of joint optimisation between the SR and
segmentation networks limits the ability to preserve their details. Furthermore, the Transform-
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er-based model contains over 50 million parameters, significantly surpassing the complexity of
the segmentation network. This imbalance in complexity highlights the challenges of integrating
such models into an end-to-end framework.

(c) Proposed End-to-End Framework: The proposed end-to-end framework achieves superior
results with a significant 99% reduction in parameters compared to the Transformer-based SR
model. This is attributed to the lightweight design of the proposed model-based SR framework,
making it well-suited for real-time applications. Our model achieves 23 fps, outperforming the 6
fps of baseline method, as we can see in Table 6. Also, the framework delivers segmentation
performance that is on par with a segmentation network utilizing high-resolution data from a
high-cost LiDAR sensor.

Impact of the Proposed Context-Aware Loss Function: The results in Table 8 highlight the im-
pact of the context-aware SR loss on segmentation performance for smaller or underrepresent-
ed classes. It is evident that the proposed loss guides the SR model to preserve finer structural
details critical for accurate segmentation.

Different Segmentation Architectures: We adopt LeNet as the primary segmentation backbone
due to its strong performance. However, our method is architecture-agnostic and can be inte-
grated with other range-view segmentation networks such as CENet and FIDNet. As shown in
Table 9, the consistent performance across architectures demonstrates the generalizability of
our approach.

Overall, this section introduced an end-to-end framework for LiDAR SR and semantic segmenta-
tion, addressing the limitations of existing methods that often fail to integrate SR and segmen-
tation tasks effectively. Using a novel joint optimisation process and a carefully designed con-
text-aware SR loss function, the proposed framework achieves high segmentation accuracy,
particularly for the underrepresented classes, while maintaining computational efficiency. The
proposed lightweight LiDAR SR network reduces complexity by 99% compared to state-of-the-
art SR models, enabling its seamless integration into an end-to-end system. Experimental re-
sults highlight that the framework delivers segmentation performance similar to that of high-
resolution LiDAR data, demonstrating its potential to bridge the gap between affordable low-
resolution sensors and high-performance perception systems.

Table 6: Performance comparison on SemanticKITTI benchmark

Pasrg m t?:fn;:!:::s PP car f;: Motorcy- Truc Per- . P.ark- foild- Fenc Trun Ter- Tr:af-
s (M) S cle k son ing ing e k  rain -Sign

(M) cle
LiDAR 64- | - 4.7 27/0.97(0.3| 0.72 |0.6/0.47|0.9/0.62|0.89 [0.63{0.6|0.65|0.4
channel 8 1 4 4 8
LiDAR 16- | - 4.7 29/0.81(0.1| 0.35 |0.3|0.12|0.8{0.54|0.7310.47/0.4|0.54|0.2
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Pasrgm tis::n;::;:s Car Motorcy- Truc Per- Road P_ark- B_uild- Fenc Trun Te.r- Tfaf-

s (M) M) cle k son ing ing e k  rain -Sign

channel 3 7 4 8 2

Transform-| 50 4.7 6/0.88|0.0/ 0.40 (0.3|0.16/0.8/0.53|0.81|0.49/0.5|0.58 (0.2

er + LeNET 7 9 9 0 4

Proposed | 0.1 4.7 230.90|0.3| 0.60 [0.6/0.44|0.9/0.59|0.83|0.5/0.5(0.63|0.4

End-to-End 7 0 3 8|6 5

Table 7: Performance comparison on SemanticKITTI benchmark

Person| Rider Car | Trunk Plants Tr:::: Pole Building Bike
HDAR 40~ | 676 | 024 | 077 | 067 | 074 | 054 | 032 | 0.81 | 0.53 | 080
channel
HDAR10- 1 655 | 0.05 | 0.43 | 025 | 066 | 015 | 028 | 072 | 034 | 0.70
channel
Transformer) o1 | 0.07 | 0.56 | 026 | 0.68 | 0.08 | 029 | 073 | 040 | 0.72
+ LeNET
Proposed | 0.69 | 0.16 | 0.75 | 0.63 | 0.72 | 0.53 | 031 | 0.76 | 0.43 | 0.75

Table 8: Impact of the proposed context-aware SR loss on segmentation performance - SemanticKITT/

Without Context- With Context-Aware

Improvement (%)

Aware SR Loss SR Loss
Person 0.36 0.44 +22.22
Bicycle 0.30 0.37 +23.33
Traffic 0.39 0.45 +15.38
Sign

Table 9: Impact of different segmentation architectures

Proposed + LeNET 0.573
Proposed + CENET 0.567
Proposed + FIDNET 0.558

3.2 Radar based environment perception

Radar sensors are a cornerstone of reliable surround sensing, employed across diverse fields
such as agriculture, aviation, robotics, and critically, the automotive industry. Unlike optical
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sensors, radar technology offers inherent advantages, including insensitivity to varying lighting
conditions and adverse weather. Furthermore, radar uniquely provides accurate measurements
of both relative velocity and range to detected objects. Historically, traditional radar systems
exhibited lower information density and resolution compared to benchmark technologies like
LiDAR, a difference particularly noticeable in point cloud representations.

However, recent advancements have led to the emergence of imaging radars, which signifi-
cantly overcome these limitations. Through sophisticated concepts such as multi-chip cascad-
ing, multiple-input and multiple-output (MIMO) processing, and advanced signal processing
methods, imaging radars have achieved substantial improvements in resolution and infor-
mation density [18]. These innovations are expanding the application scope within the radar
domain, positioning imaging radars as independent and primary sensors, rather than mere
complements to cameras or LiDARs, especially for applications requiring robust perception in
challenging environments.

Waveye's "ultra-high resolution radar imaging" boasts an angular resolution of 0.5° in azimuth
and elevation, capable of generating over 5000 detections in a typical urban scene. This high-
resolution radar data serves as the foundation for establishing a robust object detection and
classification pipeline, crucial for advanced perception tasks, particularly in the context of au-
tonomous driving and human interaction.

3.2.1 4D Imaging Radar Data and Point Cloud Characteristics

The input to the perception pipeline is a point cloud, based on radar detections, critically pro-
vided by a 4D imaging radar. The imaging radar provides the following 4 dimensions, leading to
the name “4D”: range, azimuth angle, elevation angle, and relative velocity (Doppler). These
four intrinsic measurements enable a comprehensive understanding of detected objects' posi-
tions and dynamics.

Each detection point thus carries rich, multi-dimensional information. From these primary
measurements and the intensity of the reflection, additional valuable features can be derived
or are also part of the point cloud data:

e Range: The direct distance of the detection from the radar sensor.

e Azimuth Angle (¢): The horizontal angle of the detection relative to the radar's
boresight.

¢ Elevation Angle (0): The vertical angle of the detection relative to the radar's boresight.

¢ Relative Velocity: The speed of the detected point towards or away from the radar.
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e X, Y, Z coordinates: The precise spatial location of the detection in three dimensions,
derived from range, azimuth, and elevation angles.

e Radar Cross Section (RCS): Indicating the reflectivity of the object, which can provide
clues about its material and size.

e Signal to Noise Ratio (SNR): A measure of the signal strength relative to background
noise, indicating detection quality.

These comprehensive features, coupled with synchronised camera images, form the basis for
subsequent perception tasks. The camera images primarily serve to facilitate the accurate label-
ling of radar data during ground truth generation.

Figure 11 illustrates an example of the input data from a typical scenario within the dataset.
The left panel displays a synchronised camera image, which roughly covers the same area of
interest as the radar. The right panel displays the point cloud data, where the single detections

are colored by range. One can perceive the robot and the human in the point cloud data.

Figure 11: Point cloud data provided by the imaging radar visualized in Foxglove Studio

3.2.2 Clustering: Grouping Radar Detections

Following the acquisition of raw 4D imaging radar data, the initial crucial step in the perception
pipeline is point clustering. This process involves grouping individual radar detections into co-
herent clusters, with the primary objective that each cluster ideally corresponds to a distinct
physical object present within the radar's field of view. This is crucial for:

e Robust Object Feature Extraction: This allows for the extraction of aggregated features
(e.g., cluster size, centroid velocity, orientation) that are vital for subsequent object
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classification and tracking stages, enabling a comprehensive understanding of object
behavior and presence.

e Simplified Object Representation: By consolidating numerous individual detections into
fewer, meaningful clusters, the complexity of the raw data is reduced. This simplified
representation facilitates more efficient downstream processing for object recognition
and classification.

The inherent complexity of real-world scenarios, including varying surface reflectivity and dy-
namic object density, imposes specific requirements on clustering algorithms. According to
[19], effective clustering solutions for radar point clouds must satisfy the following criteria:

e Invariance to Object Count: The algorithm should not require prior knowledge of the
number of objects in the scene.

e Accurate Object Representation: Clusters should ideally contain only points truly be-
longing to a single physical object, minimizing extraneous points or merging distinct ob-
jects.

e Robustness to Density Fluctuations: The ability to handle varying point densities across
different spatial locations is crucial, as detection density can differ for objects at various
ranges.

o Computational Feasibility: The algorithm must be efficient enough for real-time or near
real-time processing in automotive systems.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [20] is a prominent al-
gorithm that fundamentally satisfies most of these requirements, making it well-suited for
point cloud processing in radar and LiDAR domains. A slightly modified version of the DBSCAN
algorithm is used in this perception pipeline.

3.2.3 Bounding Box Estimation

Building upon the clustered radar detections, the next logical step in the perception pipeline is
the estimation of bounding boxes. This process encapsulates each identified point cluster with-
in a geometrically defined shape, typically a cuboid, thereby providing a concise and interpreta-
ble representation of the detected object. Bounding box fitting serves two primary purposes:

e Enhanced Visualisation and Intuition: Bounding boxes significantly improve the visual
clarity of objects detected within the radar point cloud, making it easier for human ob-
servers and visualisation tools to understand the scene. This is particularly valuable for
validating system performance and understanding object presence, such as pedestrians.
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e Compact Object State Representation: The parameters of a fitted bounding box (e.g.,
center position, dimensions, and orientation) offer a compact and informative represen-
tation of an object's spatial state. This aggregated information is a more robust input for
subsequent stages like object tracking, as it abstracts away individual point-level noise
and provides stable features for motion estimation.

For estimating these bounding boxes from point clouds, algorithms often leverage methods
such as the L-shape based detection, which has proven effective in both LiDAR and radar do-
mains due to the similar nature of point cloud representation. These algorithms work by fitting
an optimal rectangular or cuboid shape that encompasses the clustered points, often by mini-
mizing discrepancies between points and the fitted shape's edges. Optimisation criteria typical-
ly focus on geometric properties like area or volume minimization and maximizing the fit to the
clustered points.

The output of such a function typically includes:

e Center: The Cartesian coordinates (X, Y, Z) of the cuboid's central point.
e Dimensions: The lengths (length, width, height) of the cuboid along its principal axes.
e Orientation: The yaw angle defining the cuboid's pose in space.

This structured bounding box information is crucial for feeding into downstream modules like
object trackers and classifiers, providing a higher-level abstraction of the scene content. Figure
12 illustrates examples of fitted bounding boxes over clustered radar detections. The different
colors show the object category of the underlying clustered group of points.
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Figure 12: Visualisation of the bounding boxes fitted to the clusters

Project funded by

Co-funded by oA o . iy 4 BrAAAT| A28
u the European Union k4 ; T — K'd T e ”}I?: bt Page 53 of 99



A
AutoTRUST D3.1 Multimodal data processing. v1

3.2.4 Object Tracking: Understanding Dynamic Environments

Following the clustering of raw radar detections and the estimation of bounding boxes, the next
critical stage in the perception pipeline is Multi-Object Tracking (MOT). While clustering pro-
vides a snapshot of objects at a single moment, tracking establishes their temporal continuity.
This means identifying which bounding box in the current frame corresponds to the same phys-
ical object detected in previous frames.

Object tracking is fundamental for understanding the dynamic behavior of objects, particularly
humans, in complex environments like the automotive domain. It allows autonomous systems
to:

o Predict Future States: By understanding an object's past trajectory, its future position
and velocity can be estimated, enabling safe path planning and interaction. This is cru-
cial for anticipating movements of pedestrians or other vehicles.

¢ Maintain Object Identity: Assigning a unique ID to each persistent object allows for con-
sistent observation and analysis over time, even if detections are sporadic or occluded
momentarily.

o Simplify Downstream Tasks: A stable track provides a more reliable input for subse-
guent decision-making processes than fluctuating raw detections or single-frame clus-
ters.

3.2.5 State Estimation with the Kalman Filter

A core component of any object tracking system is the ability to estimate and predict an ob-
ject's state (e.g., position, velocity) in the presence of sensor noise. Radar measurements, like
all sensor data, are inherently subject to uncertainties stemming from various sources, such as
thermal noise or environmental reflections. To mitigate these effects and achieve lower uncer-
tainties in state estimation, the Kalman Filter (KF) [21] is widely employed.

The KF is a recursive algorithm that provides an optimal estimate of a system's state by fusing
predictions from a motion model with noisy measurements. It operates in two main steps:

e Prediction Step: Based on the object's estimated state from the previous time step and
a defined motion model (e.g., constant velocity), the filter predicts the object's current
state and its associated uncertainty. This step effectively forecasts where the object
should be.

e Update Step: When a new measurement becomes available, the filter combines this
measurement with the predicted state. The Kalman gain, a key parameter, determines
the weight given to the new measurement versus the prediction. This balance allows
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the filter to refine its state estimate, reducing uncertainty and correcting predictions
based on actual observations.

In the underlying perception pipeline, we use a constant velocity motion model.

The state of an existing track is represented by the following vector:

T Equation 35

x' = [x,V5Y,y,27v,0,,w,h]

Measurements consist of the estimated bounding boxes from the bounding box fitting and
have the following format:

T

z = [x,y,2,0,Lwh] Equation 36
Where:

e X, Y, z: Cartesian coordinates of the bounding box center point

® vy, VW, Vz: Estimated velocities of the center point in the respective dimension
e 0: Yaw angle of the bounding box

e |, w, h: Box dimensions: length, width, height

3.2.6 Data Association with Joint Probabilistic Data Association

A fundamental challenge in Multi-Object Tracking (MOT) is data association: determining which
new measurements (i.e., newly detected bounding boxes) correspond to which existing tracks,
or if they represent a new object or clutter. This problem becomes particularly complex when
multiple objects are in proximity or when detections are sparse.

The process typically begins with gating, where a region is defined around each track’s predict-
ed position. Only measurements falling within this ‘gate’ are considered potential candidates
for association with that track, significantly reducing computational load [22].

Figure 13 shows the data association problem, where the red triangle and rectangle show the
predicted states of the tracks at a certain timestep. Around these predicted positions the gating
regions are spanned. The black points are showing measurements.

Following gating, an assignment algorithm decides how to link measurements to tracks. While
simpler methods like Global Nearest Neighbor (GNN) assign each track to its single closest
measurement, this can lead to errors in dense or crossing scenarios. For robust tracking in such
environments, more sophisticated multi-hypothesis algorithms are often preferred.
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Figure 13: lllustration of the data association problem and the gating principle [23]

The Joint Probabilistic Data Association (JPDA) algorithm is a multi-hypothesis approach that
strikes a good balance between computational complexity and performance in challenging sce-
narios, particularly where objects are close to each other. Instead of making a hard assignment,
JPDA considers all valid measurements within a track’s gate. It calculates a probability for each
possible association (including the possibility of no association or clutter) and then combines
these weighted probabilities to form a single, more robust update for the track’s state. This al-
lows the filter to incorporate information from multiple potential measurements, making it
more resilient to ambiguities arising from closely spaced objects, such as multiple pedestrians
in a crowd.

The robust object tracking provided by a KF coupled with JPDA is essential for reliably monitor-
ing human activity, enabling critical functions like collision avoidance.

3.2.7 Object Classification: Categorizing Perceived Entities

Following the clustering of radar detections and the subsequent estimation of bounding boxes,
the next critical step in the perception pipeline is object classification. This process assigns se-

” u n u

mantic labels (e.g., “human,” “vehicle,” “robot”) to the detected and tracked objects, enabling
the autonomous system to understand the nature of its surroundings and interact appropriate-
ly. For instance, distinguishing a pedestrian from a static pole is paramount for safe navigation

and decision-making in automotive applications.

Given that object localisation and tracking are already handled by the preceding pipeline stages,
the classifier’s input consists of point cloud data grouped by clusters and associated with tracks.

3.2.8 PointNet Fundamentals

PointNet [24] often serves as the foundational architecture for directly processing unordered
point clouds. Unlike Convolutional Neural Networks (CNNs) that require structured grid data
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(e.g., images), PointNet can directly ingest a set of points (each with its features like X, Y, Z co-
ordinates, velocity, RCS, SNR). Its key innovation lies in using a max pooling layer, which acts as
a symmetric function. This enables the network to achieve permutation invariance — meaning
the order of input points does not affect the output. This property is crucial for point clouds,
where points inherently lack a fixed order.

The PointNet architecture as shown in Figure 14 first applies shared Multi-Layer Perceptrons
(MLPs) independently to each input point to extract point-wise features. After a feature trans-
formation to align spatial dependencies, another series of MLPs leads to the global max pooling
layer. This layer aggregates all point features into a single global feature vector, which then
passes through dense layers to produce classification scores.

Classification Network
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Figure 14: lllustration of the PointNet architecture [24]

3.2.9 PointNet++ Architecture

PointNet++ [25] extends PointNet by addressing its limitation in capturing local structures.
While PointNet extracts global features, PointNet++ incorporates a hierarchical architecture
that progressively learns features at different scales, enabling it to model local point neighbor-
hoods.

As shown in Figure 15, PointNet++ operates through multiple Set Abstraction (SA) modules.
Each SA module performs three key operations:

e Sampling: Selects a subset of points (centroids) from the input point cloud. Farthest
point sampling is commonly used for uniform coverage.

e Grouping: For each sampled centroid, it groups neighboring points within a defined ra-
dius. A standard ball-query algorithm is typically employed here.

e PointNet Feature Encoding: A mini-PointNet instance is applied to the grouped points
to extract local features for that neighborhood.
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This iterative process of sampling, grouping, and feature encoding within SA modules effective-

ly downsamples the point cloud while enriching the features of the remaining points, allowing
the network to capture contextual information from local regions. The features learned at dif-
ferent levels of the hierarchy are ultimately aggregated for final classification.
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Figure 15: lllustration of the PointNet++ architecture [25]

For this study, the PointNet++ model was adapted to leverage the rich 4D features available
from radar data, specifically including Cartesian coordinates (X, Y, Z), relative velocity, Radar
Cross Section (RCS), and Signal-to-Noise Ratio (SNR) as input for each point. This multi-
dimensional input significantly enhances the network's ability to differentiate between object
classes. Input data undergoes normalization to ensure consistent feature distributions and ac-
count for varying cluster sizes.

3.2.10 Numerical results

This section provides insights into the experimental results and key findings observed during
the development and evaluation of the perception pipeline, encompassing aspects of object
formation, tracking, and classification.

3.2.11 Object Formation and Tracking Process Findings

The object formation and tracking methodology demonstrates robust performance with mini-
mal susceptibility to clutter, effectively grouping radar detections into clusters and tracking
them over time. This provides a consistent representation of objects in the scene.

A notable finding relates to the variability in object representation within point cloud data. De-
pending on an object's geometry and orientation relative to the radar, its reflections can some-
times be segmented into multiple distinct clusters, e.g. for lift truck objects. While this poses a
challenge for consistent object representation, the robust tracking system is designed to handle
such complexities and maintain track continuity.
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Furthermore, the detectability of objects can be influenced by their material properties and sur-
face orientation. For instance, flat, metallic surfaces may deflect radar waves away from the
sensor, leading to intermittent or temporarily missing detections. Critically, the tracking algo-
rithm proves resilient in these scenarios, capable of bridging short-term detection gaps and
maintaining track continuity. If detections are absent for an extended period, tracks are appro-
priately deleted and re-initialized upon re-detection.

The overall ability of the tracking system to maintain persistent object identities for dynamically
moving entities like humans, even under challenging conditions and with varying object ap-
pearances, is a strong foundation for the subsequent classification task. This reliable tracking
performance for human actors is paramount for safety-critical applications in complex automo-
tive environments.

3.2.12 Classifier Performance

The PointNet++ classifier, chosen for its ability to directly process unordered point cloud data,
was evaluated using a dedicated test dataset comprising tracks entirely excluded from the
training data, ensuring unbiased performance assessment. The split is 70/10/20 between train-
ing, validation and test datasets.

The primary metric for comparison was Balanced Accuracy, which is particularly relevant for
datasets with class imbalances, as it averages the True Positive Rates of all classes (diagonal en-
tries in the row-normalized confusion matrix). The current results are obtained for human vs.
non-human classification, whereas other classes such as cars, trucks, motorcycles, overridable
and underridable objects will be added over the course of the project.

A detailed analysis of the single snapshot confusion matrix, as depicted in Figure 16, provides
deeper insights into the classification performance for human perception. The current percep-
tion pipeline achieves 89.3% human classification performance in a single snapshot. When
combined over multiple snapshots, this performance can be significantly improved and reaches
over 96% in less than half a second.

Human 89.3% 10.7 %

Other 97.4%

Human Other

Figure 16: Classification performance between human and other class
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Clearly, the developed pipeline based on imaging radar input shows the ability to detect and

protect vulnerable road users such as humans.

3.3 Radar-based localisation and mapping

For autonomous vehicle navigation, there are multiple solutions to locate vehicles, such as
those based on satellite positioning techniques (GPS, Galileo, etc.). However, these techniques
are not always robust and exhibit some important limitations: areas of low satellite coverage,
GPS-denied environments or covered zones. To overcome these weaknesses, they must be
fused with other types of sensors, such as cameras, lidars or radars.

Visual-based methods are the most common, but they also present the greatest challenges
when operating in adverse weather conditions (rain, snow or fog), in low-visibility settings or
under high-dynamic range lighting. On the other hand, lidars (light detection and ranging), are
sensitive to a lesser extent than cameras to adverse weather effects, vibrations or physical ob-
struction of the sensor.

Alongside these well-known methods, radars can be used for localisation based on SLAM tech-
niques. Due to its competitive price compared to lidars, it could achieve greater market pene-
tration, transforming the industry quickly and deeply. Radar navigation based on SLAM exhibits
highly robust weather and lighting behavior.

3.3.1 Overview of RADAR-based SLAM

A fully autonomous vehicle must be able to map its surroundings while simultaneously localis-
ing within them, it must also be capable of referencing a global frame of reference, i.e. global
localisation. This set of problems can be solved in a unified way using SLAM, where not only is
the vehicle’s odometry extracted but also a map is built in which it can later localise itself. If a
prior map exists, global localisation to that map can be performed and the vehicle’s pose sub-
sequently updated using odometry techniques. To address this challenge with radar, there are
multiple approaches.

The mapping and localisation methods consist of several components. The algorithm’s frontend
is responsible for inferring the vehicle’s movement and orientation, there are multiple options
for this, and today the most advanced for radar are those based on point-cloud registration. By
solving an optimisation problem that finds the maximum overlap between temporally adjacent
point clouds, one can determine the transformation matrix that yields the minimum error. That
transformation matrix describes the vehicle’s motion. Some of the most representative algo-
rithms include:
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e |terative Closest Point (ICP) [26]. This algorithm starts from an initial rigid transfor-
mation (rotation + translation). At each iteration, it finds the nearest neighbor in the
target cloud for each source point, then solves a least-squares problem to update the
transform by minimizing the sum of squared Euclidean distances between matched
pairs. Converges to a local optimum, highly sensitive to the initialization.

e Generalized ICP [27], enhances ICP by incorporating local surface structure. Each point
is associated with a covariance matrix estimated from its neighborhood. Rather than
point-to-point distances, GICP minimizes a Mahalanobis distance between local Gaussi-
an distributions, effectively blending point-to-point and point-to-plane metrics for im-
proved robustness to noise and complex geometries.

e Normal Distributions Transform (NDT) [28]. NDT performs a partition the target cloud
into a voxel grid, fitting a Gaussian distribution to the points within each voxel. The
source cloud is aligned by maximizing the likelihood of its points under these Gaussian
models. The optimisation directly updates the transformation parameters using analyti-
cal derivatives of the Gaussian density.

e Coherent Point Drift (CPD) [29]. Treats the source cloud as centroids of a Gaussian Mix-
ture Model (GMM) and the target cloud as observed data. Uses an Expectation—
Maximization (EM) algorithm to estimate both the GMM correspondence probabilities
and the transformation (for the radar case rigid). A regularization term penalizes
non-smooth deformations, ensuring coherent (“drift-free”) motion of the points.

Once the transformation between vehicle frames is estimated, it remains to define a way to
structure and store data known as the algorithm’s backend. Currently, the most accepted and
best-performing method is the pose graph [30], which provides a structure in which constraints
and uncertainties can be added easily, allowing subsequent optimisation of the calculated tra-
jectory. This method has been shown to outperform traditional backend approaches such as
the Extended Kalman Filter and particle filters. Similarly, the de facto library for performing
pose-graph optimisation is General Graph Optimisation (the g2o algorithm) [31].

The works in [32], [33], [34] demonstrate how to perform radar based odometry and extract
key points to subsequently carry out localisation.

Works such as those presented in [35], [36], [37], [38], [39], [40] show a complete SLAM pipe-
line in which the authors adopt different solutions for the algorithms used in odometry extrac-
tion, point-cloud processing and information storage; these represent the reference methods
for performing SLAM. Figure 17 shows the main differences among the most powerful SLAM
methods.
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Figure 17: Research classification

3.3.2 Waveye’s RADAR based localisation and mapping stack
In this section we will define the most representative algorithms used by the Waveye radar nav-

igation stack.

3.3.2.1 Data pre-processing

Given the temporal computing requirements (the algorithms must be suitable for real-time
processing), a down sampled of the point cloud must be performed to obtain a cloud that is suf-
ficiently descriptive while reducing computation time. Likewise, for mapping it is necessary to
eliminate all dynamic targets so that the constructed map has temporal persistence; to this
end, outlier detection is performed using a Random Sample Consensus (RANSAC) algorithm on
the radial relative-velocity profile and the azimuth angle of the detections. Finally, the point
cloud is conditioned by removing clutter, ghost targets and artifacts so that the mapping is

cleaner.

A highly efficient way to perform down sampling is to retain only the peak detections in the
range-angle-Doppler processing, this ensures a low-density yet highly descriptive subset of de-

tections.

At this stage of the pipeline, the received scan is evaluated for redundancy. If it is deemed re-
dundant (e.g., the vehicle is stationary and that area has already been mapped), the scan is dis-

carded to reduce computational load.

3.3.2.2 Front end algorithms based on point cloud matching

For radar-based odometry we use a robust variant of the Normal Distributions Transform
(NDT). In this approach, each voxel in the reference scan is modelled as a Gaussian distribution,
and we compute the likelihood that each point in the new scan was generated by those Gaussi-
ans. Maximizing this likelihood yields the rigid-body transformation matrix between the two-
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point clouds. To ensure reliable convergence, the voxel-grid resolution is adjusted dynamically
based on scene characteristics (e.g. point density, expected motion).

We also implement Coherent Point Drift (CPD) in the front end. The CPD treats one scan as cen-
troids of a Gaussian Mixture Model (GMM) and aligns the other by maximizing the overall cor-
respondence probability. Its probabilistic formulation makes it more robust in highly ambiguous
or low-structure environments.

With the implemented algorithms, we have achieved good results in terms of both efficiency
and accuracy. Table 10 shows the RMSE results for point cloud matching.

Table 10: Root Mean Square Error front end

Algorithm Mean Variance

NDT 0.6068 0.2295 0.0041 3.9692
Recursive NDT 0.5219 0.1547 0.0040 3.2868
CPD 0.4944 0.1096 0.0039 4.0898

CPD Peaks 0.5020 0.1375 0.0208 4.7275

3.3.2.3 Front end algorithms based on doppler

Radar, unlike any comparable sensor, can measure the instantaneous radial relative velocity of
each detection. Exploiting this capability, we can apply methods such as those proposed by
Kellner et al. [16], [17]. First, it is essential to include only static targets in the estimation pro-
cess using the pre-processing steps described above to filter out dynamic objects. Once the
static points are identified, we estimate velocity via least squares; if we know each point’s sig-
nal-to-noise ratio or uncertainty, we can instead use weighted least squares.

This method requires knowledge of the radar’s orientation: the measured radial velocities must
be back-projected to the vehicle’s center of rotation and then integrated over the radar’s sam-
pling interval to construct the vehicle’s odometry. When multiple radars are available, addi-
tional degrees of freedom can be added to the system of equations to estimate both yaw rate
and lateral velocity independently, although cars follow the Ackermann steering constraint (i.e.
no pure lateral velocity), this additional complexity is often unnecessary.

This method of obtaining odometry is more complex but offers a key advantage: it does not re-
quire distinguishable features in the environment, making it suitable for use in featureless areas
such as deserts or completely empty roads.

3.3.2.4 Back end

In the backend, we use a pose graph architecture where the poses obtained from radar internal
odometry and radar point cloud odometry are fused, and measurement uncertainties are also

NE— .
Co-funded by o — I ARAT| S TS
- the European Union U_ R e K’d T ".%“- “}IE et Page 63 of 99



A
AutoTRUST D3.1 Multimodal data processing. v1

incorporated. A fundamental component of the backend is loop recognition: when the vehicle
revisits a known part of the map, a loop is introduced into the graph. It is assumed that the
point is the same (accounting for the relative transformation, since it's never possible to revisit
the same point), and this constraint in the graph helps reduce accumulated drift and smooth
the estimated trajectory.

The logic required to incorporate loop recognition involves several steps. First, scene similarity
must be verified as place recognition. Place recognition is computationally expensive. To reduce
its cost, two non-exclusive strategies can be applied:

e Dimensionality reduction of the data by extracting scene descriptors. Common algo-
rithms for this include:

- Scan Context

- Fast Point Feature Histograms (FPFH)

- Principal Component Analysis (PCA) based descriptors

- Deep learning—based methods such as RadarNet or RING

e Intelligent loop search, where the search space is constrained based on the vehicle’s
orientation and position, thereby reducing the number of candidate locations to check
for revisits.

Together, these techniques enable efficient loop closure, improving map consistency and
long-term localisation accuracy.

3.3.2.5 Mapping

Once odometry is accurately estimated, each Radar frame is projected into a shared world co-
ordinate system and merged in two stages: a coarse alignment provided by the odometry esti-
mate, followed by local refinement provide by NDT, CPD or RIO depending the structure of the
environment, this refinement is done to remove residual pose errors and ensure tight scan-to-
scan registration. For advance 4D Imaging radars the mapping problem must be performed in
the 3D space, for mapping in 3D: a uniform voxel grid would explode in memory (typical 2D
method), so a probabilistic octree (e.g. OctoMap) is used. The space is adaptively subdivided:
nodes only spawn children if the contained volume exhibits mixed occupancy, and homogene-
ous regions remain as coalesced leaves. Each leaf holds a log-odds value updated via the same
Bayesian fusion but along volumetric beams rather than planar rays. To keep the tree balanced
and efficient, “lazy” insertion strategies defer deep subdivision until information gain justifies
the extra resolution, and periodic pruning collapses subtrees whose children converge to the
same occupancy state.
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Contemporary enhancements layer on top of this core: Truncated Signed Distance Function
(TSDF)-based octrees fuse signed distance measurements from multiple sweeps to vyield
smooth surface meshes in real time; semantic occupancy maps attach learned class probabili-
ties (e.g. vehicle vs. building) to each node; and GPU-accelerated ray-marching pipelines exploit
massive parallelism to sustain the high rate of modern radars. Together, these techniques max-
imize map fidelity while respecting the tight memory and computing budgets of automotive
platforms. The effectiveness of the proposed SLAM pipeline is illustrated in Figure 18, which
shows the mapping results obtained with the Waveye Radar in a representative driving envi-

ronment.

Figure 18: Mapping results based on the presented SLAM pipeline on Waveye Radar

3.3.2.6 Logic block diagram

In summary, Figure 19 shows a flow diagram of the SLAM pipeline. Over the further course of
the project, the presented framework will be extended to be able to localise based on already
recorded radar map.
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Figure 19: Logic block diagram for the presented radar-based SLAM

3.4 In-Cabin External Awareness Module

External awareness (Traffic signs detection and road condition assessment) is performed on
RGB images captured from the in-cabin outward-facing camera. The datasets are organised into
YOLO format with train, validation, and test splits, and bounding box annotations expressed in
normalised coordinates. At runtime, no custom preprocessing is applied; YOLOvS8 internally
handles input conversion to RGB, resizing to 640 x 640 pixels with letterbox padding to pre-
serve aspect ratio, and normalization of pixel values to the [0, 1] range. During training, the
framework also applies its default augmentations, including horizontal flips, HSV color jitter,
scaling, translations, and composite strategies such as mosaic and mixup. In validation and in-
ference, only deterministic resizing and normalisation are applied. Once preprocessed, the im-
ages are processed by YOLOv8 to detect traffic signs and assess road conditions, outputting
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bounding boxes and confidence scores for the relevant categories (e.g., specific sign classes or
potholes), enabling the system to maintain continuous awareness of the external driving envi-
ronment. The overall data input pipeline for the in-cabin external awareness module is illus-
trated in Figure 20.

-

RESIZE + LETTERBOX . target imgsz " MODEL INPUT (tensor) . forward pass —
[ RAW IMAGE H LOAD -. convert io RGE H (preserve aspect ratio) HTO FLOAT32, /255 . narmalize to [UJH HWC . CHW, add BATCH DIM H e

/

Figure 20. Data input pipeline for the in-cabin external awareness module

3.5 Multimodal Data Fusion for external monitoring system

This section introduces FedKalmanNet, a novel FL-based approach to autonomous vehicle local-
isation, designed to fuse heterogeneous sensor inputs—such as GNSS, IMU, and wheel odome-
try—in a privacy-preserving and communication-efficient manner. By distributing the training of
Kalman filter—inspired neural networks across vehicles, this framework enables each agent to
learn from multimodal sensor data locally, while still benefiting from collective knowledge
across the fleet.

Unlike traditional centralised localisation pipelines, FedKalmanNet avoids raw data sharing and
instead aggregates model updates, ensuring scalability and data confidentiality. The approach
supports real-time inference and adapts to sensor variability, making it well-suited for diverse
vehicle platforms and dynamic operational contexts. By integrating temporal dynamics, sensor
fusion, and distributed learning into a unified architecture, FedKalmanNet achieves robust, mul-
ti-modal localisation accuracy, even in GNSS-degraded environments.

3.5.1 Preliminaries
System Model

Vehicle i at time instant £, needs to autonomously navigate using its own sensor capabilities. Its

® . _©
i Vi %

17 € R3. Utilizing a suite of
visual, satellite, and mechanical sensors, the vehicle can gather both self and relative multi-

state is characterized by the 3D position, i.e., xgt) =[x

modal observations or measurements concerning its own state and that of a nearby vehicle j.
More specifically, we can define the state transition and self-positioning models using data
from IMU and GNSS sensors. These models, which are assumed to be degraded by Gaussian
noise, denoted as G(u, X), can be expressed as follows [41]:

e State transition model:

t t-1 t t
€0 = F(0,u®) + o |
Equation 37
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(t

where ei) ~ G(0, Rgt)). Function f(-) employs a constant velocity motion model: f =

Axgt_l) + Bugt) . Here, A=1; and B = diag(dt,dt,dt) . Control input vector u@ =

l
(x,t) u_(y,t)

i ; ugz‘t)]T € R3 consists of 3D velocity as recorded by the IMU sensor.

[u
e Self positioning measurement model

21@ — xlgt) +ny, n, ~ (0, Z'p) Equation 38
Collaborative decision-making approaches [42], [43] based on traditional optimisation, exploit
the V2X connectivity links among nearby vehicles by fusing self and relative vehicular meas-
urements, in order to localise ego vehicle and its neighbors. Relative measurements or observa-
tions include distance, azimuth and inclination angles with respect to nearby vehicles, extracted
by visual sensors like camera or LiDAR. Instead of real-time measurement transmission and fu-
sion between vehicles in challenging environments, the proposed collaborative learning scheme
in the context of FedKalmanNet will perform offline local models aggregation using only self
measurements. Afterwards, the trained FedKalmanNet will be exploited by each individual ve-
hicle in order to localise itself highly accurate and much more efficient than a collaborative de-
cision-making approach.

Data-Driven Kalman Filtering for state estimation

Before we proceed with the presentation of our framework, we will revisit the fundamental
equations of the EKF, used for state or location estimation in autonomous driving. This review
will help illustrate how standard KalmanNet enhances ego vehicle localisation through two key
features: the representation of non-linear system dynamics and the estimation of covariance
matrices for state and measurement noise using an explainable deep learning approach. There-
Y

fore, the steps for estimating state € R3 and its covariance matrix fgt) € R3*3 using the

EKF can be described as follows:

Elg:) _ Ax\gt—n n Bulgt) Equation 39

t a(t— E jon 4
sg) = AV 40T 4 O quation 40

-1 .
® _ O LOT (OO ,OT ® Equation 41
kO =5 BT (HES, HOT + @)
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A(t) _x(t) + K(t)(A(t) ( gt))) Equation 42

o® _ ® 5 ®\e® Equation 43
50 =(1-kPHP)s;,

where, Rgt) € R3 is the state transition covariance matrix, Qgt) € R3*3 denotes the measure-
ment covariance matrix and ﬁgt) € R3 represents the measurement vector required to estimate
the state or location of i, respectively. Additionally, H(t) R3*3 corresponds to the jacobian

5(0)

matrix of some generic function g(-) with respect to x( ) In case where Z; contains the GNSS

position, i.e., direct measurement of i’s state, then g( ()) = xl@ and Hgt) = I3. As such, EKF

turns to Kalman filter (KF), i.e., its linear counterpart.

The KalmanNet architecture is designed to estimate the uncertainty matrices of KF algorithm.

These include the Kalman gain matrix th) € R3*3, the state transition covariance matrix
® - - LT - m3x3 L w® o m3x3
R; " ,the predicted state covariance matrix §; ~ € R>*?, and the matrix W;~ € R>*°. The latter

—=(®)
is defined as Wgt) = H@Si H@T Q@. Using these estimated matrices, KalmanNet com-

%® and its covariance 3'@ following the standard KF equa-

tions. The network takes as input the current and previous measurement vectors Z Yand z(t 1),

,\(t 1) (t 1) ®

putes the updated state estimate X;

the previous state estimates X , X , and xl(t , the control input vector u;”, and the
time interval dt. Therefore, the equations of the KF can be formulated as:
th), Rgt) S() W(t) KalmanNetg ;(-) Equation 44
56\( ) = x(t) + K(t) (A(t) E?)) Equation 45
S(t) S( ) S( )K(t) Equation 46

where KalmanNety ;(-) represents the KalmanNet network, which is used to estimate the cor-
responding uncertainty matrices.

The architecture of KalmanNet consists of three gated recurrent unit (GRU) layers intercon-
nected with fully connected layers. These layers are structured to progressively estimate the

required matrices: The first GRU layer estimates Rl@. The second layer uses the output of the

. . <® . . . .
first to estimate §; . The third layer utilises the outputs of the previous layers to estimate Wgt).
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=(®)
Finally, §; and Wgt) are used to compute Kl@. This sequential structure allows the network to
capture the dependencies between these matrices in the Kalman filtering process.

3.5.2 Federated Data-Driven localisation: FedKalmanNet

In this Section, the proposed FedKalmanNet methodology will be presented. Based on the dis-
tributed learning theory [44], the proposed FL scheme can be realized by an ATC strategy, moti-
vated by the fact that each vehicle employs a local KF algorithm utilizing the corresponding
KalmanNet, and subsequently the local KalmanNet models are fused at the server side in order
to derive a more robust and accurate global KalmanNet. Initially, we will formulate the general
approach of FedKalmanNet and then present the proposed adaptation and combination steps
of this methodology.

Federated KalmanNet

To establish the FL (federated learning) framework, we consider a network of V' vehicles. In
this distributed learning framework, each vehicle i participating in the proposed collaborative
learning process, utilises its local dataset D; = {Zl.l:T",Xil:T"}, containing an input trajectory as
measured over time by its own sensors (GNSS, IMU, etc.), as well as the corresponding ground
truth (or target) trajectory. More specifically, T; is the length of training trajectories, input

1:T; _
Z;"'=

[zV ... 2] € R&Ti contains the noisy 3D positions and velocities for the corre-
sponding training trajectory, while target Xl.I:T" = [xgl) ng")] € R3*Ti contains the corre-
sponding ground truth 3D trajectory. Note that in order to generate input Zl.l:T", we add white
Gaussian noise to ground truth position and velocity of the training dataset following Equation
37 and Equation 38 For simplicity, we assume that each local dataset consists of a single pair of

input and ground truth trajectories.

Each vehicle employs a local KF algorithm and trains its corresponding KalmanNet model using
its private dataset, following Equation 44 and Equation 46. The fact that each agent employs
only its local dataset to train a local model may lead to limitations in the model's ability to gen-
eralize across various environmental conditions. The local KalmanNet model (KalmanNetg ;(+))
might only capture the uncertainties in sensor measurements specific to the local environment,
hence failing to capture the system dynamics across different scenarios (e.g., weather condi-
tions, trajectories in rural or urban areas). To address this limitation, we propose the FedKal-
manNet framework. This approach enables agents to collaborate under the coordination of a
central server. Through this collaboration, vehicles can learn a more robust KalmanNet model
that demonstrates enhanced generalization capabilities across diverse environmental condi-
tions.

Federated Data-driven localisation: Adaption Step

Project funded by .
Co-funded by i s i e BELAIAT| A K| 2.9
u the European Union k4 e T — K'd T e “'}IE. bt Page 70 of 99




A
AutoTRUST D3.1 Multimodal data processing. v1
During the adaptation step, each vehicle i employs a local KF which utilises a local KalmanNet

KalmanNety ;(*) to estimate the Kalman gain:

K gt) = KalmanNety ;(*) Equation 47

A(t) _ x(t) n K(t) (A(t) El@) .
Equation 48
In the proposed framework, the local KalmanNet can be trained end-to-end using the local da-
taset. In more detail, let 8; denote the trainable parameters of the local KalmanNet, and y; be a
regularization coefficient. Each agent employs an #,-regularized mean-squared error (MSE) loss
to optimize its local model, defined as follows:

2
£,(6,) = | +7illo?

(t) ) _x®

i

Equation 49

where x(t)( ©, ; 0 ) is the output of the local KF parametrized by z ) and 0;. The fact that the

KalmanNet model is optimized using only the local dataset of each agent may lead to limita-
tions in the model's ability to generalize across various environmental conditions. Hence, after
all participating vehicles i € N have updated their local KalmanNet using Equation 49, the next
step is the combination phase.

Federated Data-driven localisation: Combination Step

The goal of this step is to develop a model that captures underlying system dynamics and accu-
rately estimates covariance matrices for state and measurement noise using local data from the
vehicles. Given the structure of KFs, agents upload to the central server only KalmanNetg_ (),

as defined in Equation 44. The server then aggregates the local KalmanNets using a fusion rule:

N
KalmanNety o) = z a;KalmanNetg, ()

, Equation 50
=1

where KalmanNetgg(-) denotes the global KalmanNet and a; are the combination weights.

Afterwards, the server broadcasts the global KalmanNet model back to all clients. Each vehicle
then initializes its local KalmanNet model (Equation 44) with the received global model. This
iterative process is repeated for M communication rounds, enabling the global model to con-
tinuously improve, incorporating diverse data as well as ensuring the privacy of local training
datasets. Thus, the FedKalmanNet method can be realized by a twofold process: adaptation,
i.e., training the local KalmanNet using KF concept and the local private dataset, and combina-
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tion, i.e., aggregating the local models at the server side and broadcasting the global model
back to the agents:

th) = KalmanNetg ;(*)

Equation 51
~® _ =® ® 50 _ =0
X =x K@ —x) Equation 52
N
KalmanNet, M= Z a;KalmanNetg, ()
i=1 Equation 53
KalmanNety ;(-) = KalmanNetgg )
Equation 54

The proposed FedKalmanNet approach is demonstrated as depicted in Figure 21.

3.5.3 Numerical results

Simulation setup

The simulations were carried out using dataset? which contains the trajectories of 60 vehicles
moving in CARLA simulator's environment [45]. The dataset contains ground truth 3D position,
linear velocity, acceleration, etc. For the testing evaluation, we have chosen vehicle with index
0 as the ego vehicle over the simulation horizon of T = 900 time instances and sampling inter-
val dt = 0.1 sec.

Server

Combination Step
N

.‘(a[maNetg": Z a, KalmaNetg,
i=1

Global Local KalmanNet KalmanNetg
KalmanNet Upload M

Download
& kalmaNetg, kalmaNetg,, % (@)
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Figure 21: The proposed end-to-end FedKalmanNet approach
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The evaluation study will consider two scenarios in order to assess the proposed FL approach: i)
comparing FedKalmanNet with the traditional KalmanNet when all the training data are availa-
ble to the global server, as well as when only the dataset from an individual agent is used dur-
ing training, ii) how the collaborative training paradigm presented in this work can outperform
traditional optimisation based CL approaches, which require much larger amount of infor-
mation from nearby vehicles to localise ego vehicle. Baseline methods, apart from standalone
GNSS, include MSMV [42] and LKF-SA [43], which set the covariance matrix of sensor meas-
urements equal to identity. The error metrics include Root Mean Square Localisation Error
(RMSL) over Time, i.e., RT — LE, in order to evaluate ego vehicle i's ability to localize itself. Ad-
ditionally, the Cumulative Distribution Function (CDF) of instantaneous localisation errors
demonstrates the probability of location error to be lower or equal than a specific threshold.
For the training of networks, we have exploited four vehicles/clients with trajectories from
TownMap10 of CARLA, and varying lengths (T =1550, 4600, 1420), which are shown in Figure
22. Although they seem similar, vehicles actually move with different velocities. For example,
the minimum and maximum velocity of agents 1 and 2 are between 8.9 — 10.8 m/sec and
9.2 —10.9m/sec, respectively, while those of 3 and 4 are between 0.7 — 10.7 m/sec and
3.6 — 10.7 m/sec, respectively. The input to the network is the ground truth 3D trajectory de-
graded by additive white Gaussian noise of zero mean and standard deviation X, =
diag(1.5m,1.5m,1.5m).
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Figure 22: Client s trajectories from TownMap10 of CARLA
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Furthermore, additive white Gaussian noise is used for the 3D velocity inputs in order to realis-
tically capture state transition noise. The standard deviation of velocity noise is set to 10% of
the ground truth velocity of the specific vehicle, as stated in [46]. Each trajectory is splitted in
subtrajectories of length equal to 100, while 80% and 20% out of them are used for training
and cross validation. For the centralized training, all four datasets are used to train CentrKal-
manNet for 1500 epochs. For the individual training, we exploit the trajectories only from agent
0 and train the network for 500 epochs. For the FL implementation, we adopt the FedAvg [47],
and use 20 communication rounds. Batch size is equal to 1, while learning rate and weight de-
cay are set to 0.3.

Evaluation study

1) Impact of federated learning vs centralized and individual training: In this testing scenario,
we will evaluate the performance of the proposed data-driven FL framework with respect to
centralized and individual implementation of KalmanNet's training. More specifically, Figure 23
demonstrates the convergence of FedKalmanNet to CentrKalmanNet after 20 communication
rounds. To be more detailed, after each round both FedKalmanNet and CentrKalmanNet are
evaluated in terms of RT — LE with the GNSS based trajectory of ego vehicle as input, which
has been generated by adding white Gaussian noise of zero mean and standard deviation X, =
diag(1.8m, 1.8m, 1.8m), as well as a bias drawn from uniform distribution U[0.5, 1] to the
ground truth. In that way, we will show that the performance of networks is still high enough,
regardless of the fact that we have conducted training with input trajectory degraded by Gauss-
ian noise. Furthermore, the standard deviation of velocity noise is set to 15% of the ground
truth velocity. Clearly, centralized training achieves superior performance in terms of RT — LE
due to the availability of all training data. However, the distributed framework of FedKal-
manNet reduces RT — LE after each round, as it is expected from the relevant theory, reaching
RT — LE at round 20 lower than 1.5m, with respect to 1.43m of CentrKalmanNet. Additionally,
Figure 24 highlights the CDF of ego vehicle localisation error using FedKalmanNet (after 20
rounds of training), CentrKalmanNet, IndKalmanNet, a traditional KF taking as input the GNSS
and without any knowledge of system uncertainty, and, finally, GNSS. For each one of the
curves, we indicate the maximum error attained by each approach. For example, we see that
the simple KF reduces GNSS error by almost 3m, while the IndKalmanNet reduces it by 5m,
clearly showing the benefits of estimating the underlying uncertainty. Most importantly, the
proposed FedKalmanNet reduced maximum GNSS error by 6.3m, reaching the same accuracy
with that of CentrKalmanNet. As such, we conclude that the proposed data-driven FL frame-
work efficiently converges to the centralized model's accuracy, significantly improving at the
same time the localisation accuracy of ego vehicle.

S
i
g

Co-funded by wm_ Lt e 15 iy 4 BrAAAT| A28
u the European Union k4 e T — K'd T e “'}IE. bt Page 74 of 99



e A
AutoTRUST D3.1 Multimodal data processing. v1

1.56 —— FedKalmanNet
—— CentrKalmanNet

1.54
£152

Y150
~ 1.48
s
1.46
1.44

A e —
2.5 5.0 7.5 10.0 125 15.0 175 20.0
Communication rounds

Figure 23: Convergence of FedKalmanNet to CentrKalmanNet after 20 communication rounds.
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Figure 24: Cumulative distribution function of ego vehicle localisation accuracy

2) Impact of collaborative training vs collaborative decision-making for ego vehicle localisation:
In the second testing scenario, we will investigate the performance of FedKalmanNet versus CL
techniques LKF-SA and MSMV. Our goal is to demonstrate that federated data driven localisa-
tion which exploits only self measurements of ego vehicle, is capable of outperforming collabo-
rative decision-making solutions which require to fuse information coming from nearby vehi-
cles. As such, by estimating the underlying uncertainty through the proposed collaborative
training scheme, we will accurately and cost-efficiently localise ego vehicle. Results are summa-
rised in Figure 25. To simulate relative and self measurements that have to be fused by the ego
vehicle, we set standard deviation of distance, azimuth and inclination angle measurement
noise equal to o;,=1m , o0, =05, = 4 , respectively, as well as X, =
diag(3.5m,3.5m, 3.5m). Furthermore, each vehicle establishes a connected neighborhood
with its nearby vehicles within a range of 30m, consisting of a maximum number of vehicles
(based on shortest distance). In Figure 25, we demonstrate RT — LE of each technique with
respect to maximum number of connected neighbors. Clearly, GNSS experiences the lowest ac-
curacy, while both FedKalmanNet and GNSS are actually independent of the number of neigh-
bors. LKF-SA improves its accuracy as the size of neighborhood grows larger, reaching RT — LE
equal to 1.62m, requiring at the same time richer V2X communication resources in order to
perform the fusion. MSMV performs more or less the same in all cases (2.1m of RT — LE). We
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see in all cases that FedKalmanNet significantly outperforms the other solutions, reaching 1.5m
of accuracy, exploiting only the self measurements (GNSS and velocity) of ego vehicle. On the
other hand, LKF-SA has to exploit larger neighborhoods in order to enhance the localisation

performance.
6.11 6.11 &11 6.11
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e LKF-SA
5 - MSMV
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Figure 25: FedKalmanNet outperforms the baseline methods, exploiting only self GNSS and velocity. LKF-SA has to integrate
greater amount of information from neighbors to reach FedKalmanNet's accuracy.

Concluding remarks

In this Section, we have introduced FedKalmanNet, the FL counterpart of KalmanNet, in order
to enable a collaborative training paradigm among a group of vehicles, aiming to enhance vehi-
cle localisation through self measurements uncertainty estimation. The distributed learning
scenario among a group of vehicles has been formulated through the ATC strategy, where each
vehicle exploits initially its local private dataset to train a local KalmanNet, which is then updat-
ed by a global aggregation operation at the server side. Evaluation results in CARLA simulator
demonstrate that the FL model features almost similar performance with its centralized coun-
terpart, while significantly outperforms the model trained with the data coming from an indi-
vidual vehicle. Most importantly, we have shown that the proposed FL data-driven localisation
framework exploiting only self measurements, performs much more efficient than collaborative
decision-making schemes, which fuse data from large neighborhoods of connected vehicles in
order to localise ego vehicle. In deliverable D3.2 and based on the previous formulation, we will
investigate how different aggregation rules at the server side influence the FL model accuracy,
as well as the potential of enabling a serverless and personalized training strategy to enhance
the overall accuracy of multi-modal fusion for localisation not only of single autonomous vehi-
cle, but a swarm of CAVs.
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3.6 Concluding remarks

The algorithms introduced in this section demonstrate how advanced processing techniques
can significantly enhance the utility of low-cost sensors in real-world perception tasks. By apply-
ing model-based super-resolution, federated learning, and deep radar processing, AutoTRUST
enables high-performance environmental understanding without reliance on expensive hard-
ware. These methods collectively support scalable deployment of autonomous capabilities and
form a core part of the perception stack for robust and efficient mobility systems. The next sec-
tion shifts focus from external to internal monitoring, detailing the fusion of in-cabin sensor da-
ta to assess driver and occupant state.
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4 Algorithms for internal sensor data processing and fu-
sion

The development of robust internal sensing systems is a central component of the AutoTRUST
architecture, aiming to enhance safety, personalization, and inclusiveness in automated mobili-
ty by monitoring the vehicle cabin environment and its occupants. This section presents the
foundational methodologies and system architecture that enable in-cabin multimodal percep-
tion using synchronised visual and acoustic data streams. It focuses on sensor deployment, data
acquisition, and fusion techniques that serve as the basis for future behavioral and context-
aware analytics.

The internal monitoring system, as described in this deliverable (D3.1), emphasizes the modular
design and integration of complementary sensing modalities—including RGB cameras and mi-
crophone arrays—for capturing rich, high-resolution visual and audio cues. These sensor
streams support a wide range of downstream analytics tasks, such as driver distraction detec-
tion, facial emotion recognition, drowsiness estimation, occupant identification, and abnormal
sound event recognition. At this stage, the system prioritizes the establishment of robust data
pipelines, multimodal synchronisation, and preliminary signal processing, laying the ground-
work for real-time interpretation and intelligent decision-making in the cabin context.

Most importantly, the current deliverable provides a high-level overview of the algorithmic
strategies, calibration methods, and architectural design principles, which will be further elabo-
rated and extensively evaluated in deliverable D3.2 “Advanced internal and external sensing
system”.

4.1 Multimodal data fusion for internal monitoring system

One of the foundational challenges in multimodal sensor fusion is temporal synchronisation.
Piatkowski et al. [48] proposed a lightweight algorithm for synchronised multimodal data acqui-
sition based on Temporal Sample Alignment (TSA), addressing the desynchronisation problem
across sensor streams with heterogeneous sampling rates. Their algorithm achieves alignment
in software without hardware modification, supporting real-time acquisition from sensors such
as RGB cameras, LiDARs, microphones, and IMUs. The authors demonstrate that TSA can re-
duce drift and maintain alignment under realistic operating conditions, thereby increasing the
robustness of downstream fusion pipelines. While originally validated with visual and spatial
sensors, the proposed method is generalizable to in-cabin modalities where fine-grained tem-
poral correlation between, for instance, voice cues and facial expressions is critical.
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Cameras remain a cornerstone of in-cabin monitoring due to their high spatial resolution and
compatibility with deep learning-based perception. Ciesla and Ostermayer [49] investigated
multimodal distraction detection by combining camera data with vehicle telemetry and inertial
measurements. Using a recurrent neural network architecture, they demonstrated that fusing
temporal sequences of RGB video frames with inertial data significantly improved the detection
accuracy of driver distraction compared to unimodal baselines. Their results support the hy-
pothesis that spatiotemporal fusion of behavioral cues across sensor domains enables finer-
grained classification of cognitive and physical driver states.

Complementing visual information, audio sensing contributes an additional channel for activity
and intent recognition. Jiang et al. [50] implemented a microphone array system integrated
with high-definition maps to enhance vehicle perception through sound. Although their system
focused on detecting external acoustic events (e.g., sirens, vehicle localisation via Time Differ-
ence of Arrival (TDoA)), their framework validates the feasibility of real-time multi-microphone
fusion in vehicular settings. The techniques employed—beamforming, spatial filtering, and
map-based acoustic localisation—can be extended to in-cabin environments to capture speech,
detect stress, or monitor interactions, especially when fused with visual inputs.

To bridge the gap between visual and acoustic sensing, event-based cameras offer a novel mo-
dality that encodes dynamic visual changes with microsecond latency. These sensors produce
sparse, high-frequency asynchronous data, ideal for capturing rapid movements without mo-
tion blur or lighting artifacts. Savran et al. [51] introduced a fully convolutional neural network
for Voice Activity Detection (VAD) using an event camera alongside microphone signals. By con-
verting event streams into event-intensity maps and integrating them with audio spectrograms,
their system achieved high accuracy in detecting speech onsets and offsets. This work illustrates
how event-based vision can enhance audio perception tasks, particularly in low-light or visually
ambiguous conditions, making it suitable for in-cabin monitoring scenarios involving speech or
gesture recognition.

Further supporting the utility of event-based cameras, Feng et al. [52] developed a real-time
object detection framework that integrates event-based vision into the CARLA simulator and
ROS pipeline. Their method adapts YOLOv8 to handle asynchronous event streams and demon-
strates high detection accuracy on dynamic objects. While the primary application is external
object perception, the underlying architecture—transfer learning from event-driven input, inte-
gration with conventional pipelines, and low-latency inference—provides a transferable meth-
odology for applying event-based vision to in-cabin settings, such as fast driver head-turn de-
tection or interaction monitoring.
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Beyond individual sensor capabilities, the effectiveness of in-cabin monitoring systems increas-
ingly relies on the design of fusion strategies that integrate heterogeneous sensor data into se-
mantically meaningful representations. Shariff et al. [53] provide a comprehensive taxonomy of
fusion methodologies that can be directly applied to the in-cabin domain. These include fusion
based on discernible units, where sensor streams are aligned by semantically meaningful seg-
ments—such as synchronizing lip movements from RGB or event cameras with voice onset from
microphones to detect speaking behavior. Fusion based on feature complementarity is particu-
larly relevant for integrating spatial-temporal features from event cameras with audio intensity
or environmental sensor data (e.g., cabin temperature or CO; levels), enabling richer inference
of passenger states such as fatigue or stress. In fusion based on target attributes, different sen-
sors monitor distinct dimensions of the same subject; for instance, voice pitch (microphones)
and facial tension (visual sensors) jointly inform emotional or cognitive load estimations. Finally,
fusion based on multi-source decision-making aggregates individual sensor judgments—such as
distraction scores from vision, acoustic, and physiological modalities—into a unified driver state
classification. These strategies, although widely applied in external Advanced Driver Assistance
Systems (ADAS) perception systems, are now being adapted for internal monitoring, where
asynchronous and noisy sensor signals make fusion both a technical challenge and an oppor-
tunity for more robust modeling of driver and passenger behavior [32].

Together, these studies converge on the conclusion that effective in-cabin monitoring relies not
only on sensor diversity but on the fusion mechanisms that integrate them. Temporal align-
ment methods, recurrent and convolutional architectures, and cross-modal representations all
play critical roles in enabling robust interpretation of driver and passenger behavior. As sensor
technologies evolve, particularly in asynchronous domains like event-based vision, continued
innovation in fusion strategies will be essential to support safe, adaptive, and intelligent in-
cabin systems.

Table 11: Fusion process for in-cabin monitoring

Stage Component / Tool Description
Input sensor RGB Camera Captures color images of the in-cabin envi-
ronment.
Depth Sensor Provides depth |nforma'F|on for spatial under-
standing.
Fusion Pro- ZED SDK (Neural Depth En- Combines RGB and depth data to estimate 3D
cessing gine + Body34) skeleton keypoints

Extracts 34 keypoints (upper body) in real

Body Tracking Module time from fused input.
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Component / Tool Description
Used for behavior recognition, risk detection,
and simulation input.

3D Skeleton Keypoints

Stored for visual reference and dataset en-

RGB + Depth Frames .
richment.

The in-cabin monitoring system integrates visual and spatial data streams through a unified
skeleton-based representation. 3D keypoints representing the occupant’s upper-body posture
are extracted using stereo vision and depth information. These skeleton outputs serve as the
integration backbone across modules. They provide a consistent input format for behavior
recognition, simulation control, and dataset structuring. By centering the fusion architecture on
3D skeletal representations, the system simplifies the combination of multimodal inputs and
ensures modularity for future sensor extensions or pipeline upgrades. The overall framework is
summarised below in Table 11.

The functionality of in-cabin monitoring will focus on performing crucial tasks for internal per-
ception, like driver distraction, facial emotion recognition, occupant identification, etc., that are
analyzed in the following. The extensive evaluation and results, as well as the assessment of the
in-cabin monitoring system performance will be provided in deliverable D3.2.

In the following, we describe the algorithms used for driver distraction detection and facial
emotion recognition.

4.1.1 Driver Distraction Detection

Captured video data from front-facing and mid-to-side view cameras were first standardized to
ensure consistency across all inputs. Each video frame was resized to a resolution of 224 x 224
pixels, which allowed uniform processing in downstream modules. To enhance the robustness
of the data and account for variability in real-world driving conditions, frames were further
augmented. Random cropping simulated slight camera misalignment and variations in zoom,
while brightness adjustments compensated for different lighting conditions encountered during
driving, as illustrated in Figure 26. Temporal variations were mimicked using frame jitter, and
horizontal flipping was applied to account for left-right variations in driver behaviors. These
preprocessing steps ensured that the raw video data was transformed into a more diverse and
reliable representation for analysis.

After preprocessing, the frames were organized into sequential clips, forming video batches
suitable for input into the distraction detection pipeline. This sequencing maintained temporal
continuity across frames, which is crucial for capturing dynamic driver behaviors. The resulting
batches represented a fully processed, augmented, and model-ready form of the raw camera
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data, enabling efficient and effective downstream analysis while preserving the temporal and

spatial characteristics of driver actions.

Video Output Frame Resize (224,224) Augmented Frames

‘ > ﬁ%ﬁ |\\: 
28

Figure 26: Example augmentations of a single resized camera frame.

4.1.2 Facial Region Extraction

All facial analysis tasks in this system, including emotion recognition, occupant identification
and drowsiness detection, start from raw frames captured from front faced camera. To ensure
consistency and reliability across different analyses, the following preprocessing steps are ap-
plied to all faces:

1. Face Detection: Facial regions are located in each frame using a Multi-task Cascaded
Convolutional Neural Network (MTCNN)-based pipeline, which identifies key landmarks
and produces bounding boxes around detected faces. This ensures that only relevant fa-
cial regions are analyzed, removing background and irrelevant information.

2. Cropping: Detected faces are cropped and, if necessary, resized to match the input re-
quirements of the next processing stage.

By applying these preprocessing steps, the system produces clean, standardized facial images
that can be used for various tasks—whether predicting emotions, identifying individual occu-
pants or detecting drivers drowsiness—without requiring task-specific adjustments at this

stage. An indicative example of the aforementioned procedure is depicted in Figure 27.
MTCNN Face Detection

Camera Output Cropped Face Region
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4.1.3 Drowsiness Detection

Drowsiness detection is performed on the frontal camera, where recorded frames are resized
and normalized to account for variations in lighting and pose. Face detection follows the ap-
proach described previously, and the pipeline then focuses on landmark detection. Facial land-
marks are extracted using two Open Neural Network Exchange (ONNX) models: one for face
detection (SCRFD_10G_KPS) and one for landmark localization (2d106det). Input frames are
processed, aligned via affine transformations, and cropped before landmarks are mapped back
into the original frame coordinates. These landmarks are then used to calculate the Eye Aspect
Ratio (EAR) and Mouth Aspect Ratio (MAR), which represent eye closure and yawning, respec-
tively. Acting as key indicators of drowsiness, EAR and MAR values are passed into a lightweight
classifier, with temporal smoothing applied through a sliding window to ensure classification
stability and reduce false positives. The pipeline, as shown in Figure 28, is optimized for real-
time inference with ONNX Runtime, making it suitable for edge deployment.

Applied Non-

» 17 - Maximum Suppresion o, a%%
- = e, ‘1“":@
Camera Input Pre-Processing = = A := g
=3 L 1 Detected faces are ; UA-& % It
normalized and 5 e
aligned via T T
transformations .
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Post- Landmark
Processing
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Figure 28: Data processing pipeline for drowsiness detection

4.1.4 Abnormal Sound Event Detection

The Abnormal Sound Event Detection (ASED) is performed in real-time using the ReSpeaker Mic
Array v2.0 with audio captured at a 16,000 Hz sampling rate and segmented into 1-second
chunks for processing. Each 1-second audio segment then undergoes a preprocessing pipeline
where the raw waveform is transformed into a structured input suitable for model inference.
This includes the computation of a log-mel spectrogram using Short-Time Fourier Transform
(STFT) with 25 ms windows and a 10 ms hop size. The frequency content is then projected onto
64 mel filter bands, covering the range of 125 Hz to 7500 Hz. The resulting spectrogram is ex-
panded in dimensionality and cast to float32 to match the input format expected by the acous-
tic model. The data processing pipeline of the acoustic input is depicted in Figure 29.

S .
Co-funded by - ——
- the European Union U: S B LEosseE Page 83 of 99




A
AutoTRUST D3.1 Multimodal data processing. v1

Log
Compression

Mel filterbank

» Segmentation

) Audio data Framing & Short Tlme
Sampling rate: 16 kHz, mono Windowing Fourier

Transformation
e —

Mel spectrogram

Figure 29: Data processing pipeline for abnormal sound event detection.

The preprocessed audio is fed into a neural acoustic event classification model, converted to
the ONNX format and executed via ONNX runtime for efficient real-time inference. The model
outputs a vector of class logits, representing the likelihood of various predefined acoustic
events: Baby cry, Noise, Scream, Siren, Snoring, Speech, Traffic noise, and Vehicle Horn.

The dominant event class is identified and stored along with its confidence score and
timestamp using UltraDict, a shared-memory dictionary that supports real-time inter-process
communication. This enables downstream modules — such as the Large Language Model (LLM)
process — to access and integrate the current acoustic context into multimodal reasoning and
decision-making workflows.

4.1.5 Virtual assistant for multimodal data fusion

The virtual assistant integrates multimodal data fusion to continuously monitor the internal
state of the vehicle cabin by combining information from visual, auditory, and emotional inputs.
Specifically, it retrieves real-time data from three sources: facial emotion detection, camera-
based distraction monitoring, and acoustic event detection. Each modality provides individual
labels (e.g., emotions like anger or fear, visual distractions like texting, and sounds such as snor-
ing or horns), which are processed in parallel and stored using shared memory structures.

The system aggregates short-term observations (e.g., the last 10 frames per modality) and per-
forms statistical filtering to determine the most frequent (and therefore likely) state for each
source. It then performs event-level fusion by checking whether any of the newly detected
dominant states have changed and are deemed critical. Only significant events—such as a shift
from a neutral to a dangerous emotion or a new distracting behavior—trigger a response. Un-
der such circumstances, the assistant agent is dynamically generated a context-aware textual
prompt, which prompts it to produce brief, distinct warnings for every issue it detects. By using
fusion logic, this method reduces false positives and improves robustness by guaranteeing that
only significant multimodal combinations result in interventions.
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4.2 Data Synchronisation

This section describes the communication protocol and synchronisation approach used for in-
cabin monitoring.

4.2.1 Communication and Synchronisation via UltraDict

The internal monitoring system brings together several key components—like acoustic event
detection, facial emotion recognition, face identification, and an analysis of driver distraction.
At its core, it relies on a lightweight inter-process communication tool in Python, called Ul-
traDict, which allows the different modules to run independently yet stay in sync by smoothly
sharing data. Technically, the main goal here is to create a fast and dependable method for
combining multiple types of input. This ensures the Al assistant always has a clear, up-to-date
picture of both the driver's behaviour and the surrounding environment.

4.2.1.1 Architecture Overview

Each module operates as an independent process, complete with its own pipeline for data ac-
quisition, inference, and output. Rather than direct communication, all interaction between the
modules and the Al assistant happens through UltraDict, a lightweight shared-memory inter-
face that acts as the system's communication backbone.

This modular design allows new sensors or upgraded components to be integrated without dis-
rupting existing workflows. Everything stays loosely coupled, which means maintenance is easi-
er, and scaling becomes a matter of plug-and-play rather than full rewrites.

Modules remain focused on their specific responsibilities, while the assistant takes charge of
integration and reasoning. At regular intervals, it queries the shared memory segments, re-
trieves the most recent outputs from each perception module, and fuses the data into a uni-
fied, time-aligned snapshot of the system state.

By keeping responsibilities clearly divided, the architecture stays robust and flexible. It supports
fast iteration cycles and makes room for continuous system improvements—without compro-
mising stability.

4.2.1.2 Inter-Process Communication and Synchronisation

UltraDict functions as the central glue holding the system’s components together. It provides a
fast, shared-memory interface where each module writes its predictions into uniquely named
memory segments. These segments can be accessed in parallel by other processes—most no-
tably, the assistant. This setup eliminates the overhead and complexity often seen with socket-
based or message queue communication, making data exchange both simpler and faster.
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Interestingly, synchronisation across different data modalities doesn’t rely on explicit coordina-
tion. Each module updates its respective memory space independently, at regular intervals.
Meanwhile, the assistant continuously polls these segments, pulling the latest prediction val-
ues. It uses polling rates and contextual logic to verify the relevance and timing of each value,
effectively aligning inputs in time without tight coupling.

By adopting a shared-memory model for communication, the system sidesteps many of the pit-
falls of traditional IPC mechanisms. UltraDict streamlines the architecture, removing the need
for handshakes or complex messaging protocols. As long as each module maintains its expected
update rate.

4.2.2 Future lterations

While the existing system utilises UltraDict for rapid shared-memory communication between
perception modules and the assistant, in the final version of WP3 deliverables, we will imple-
ment ROS2 to establish a more modular, maintainable, and introspectable framework. In this
configuration, every perception module (such as emotion recognition, distraction detection or
sound event detection) will operate as a ROS2 node, transmitting structured messages to spe-
cific topics. The virtual assistant will subscribe to these subjects to create an internal, real-time
awareness of the driver’s condition, and for the in-cabin environment in general. ROS2 offers a
solid framework for managing these interactions, featuring tools for message visualisation, de-
bugging, and lifecycle management. This facilitates scaling the system, replacing models, or in-
troducing new features (such as gesture recognition) without changing the fundamental archi-
tecture. The assistant can now utilise ROS2 to receive sensor-based predictions and broadcast
speech outputs or alerts, creating a complete event-driven cycle among perception and reason-

ing.

4.3 Simulation-Based Multimodal Fusion Framework for In-Cabin Moni-
toring

As part of AutoTRUST’s internal monitoring system, the MORAI’s simulation platform provides a
scalable, configurable, and high-fidelity environment for testing and validating multimodal data
fusion strategies. This simulation-based framework is designed to complement real-world sens-
ing by enabling controlled experimentation with virtual sensors and occupant behaviors, accel-
erating the development of robust in-cabin monitoring systems.

Virtual Sensor Architecture and Methodology

The simulation platform as shown in Figure 30, built on Unreal Engine 5.4, adopts a modular,
class-based architecture that allows precise configuration and control of virtual in-cabin sen-
sors. These sensors, implemented as unreal engine components, can emulate RGB, infrared
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(IR), and depth camera modalities. Users can configure each sensor's parameter, including field
of view, focal length, orientation, etc., and position them flexibly within the vehicle cabin (e.g.,
near the rear-view mirror, on the seatback, or side pillars). The current implementation in-
cludes a single RGB camera with a 2.1 mm focal length and a polarizing lens mounted at the
rear-view mirror position, following industry best practices for unobtrusive driver and occupant
monitoring.

The architecture includes interactive User Interface (Ul) components and supports both manual
control and automated pipelines for scenario execution. Through a set of specialized widgets
and managers, users can trigger occupant animations, adjust environmental conditions (e.g.,
lighting), configure sensor settings, and initiate synchronised data capture. This flexibility ena-
bles rapid prototyping of sensor configurations and behavior scenarios.

Synthetic Multimodal Data Generation

MORALI’s simulation platform supports the generation of synchronised synthetic datasets com-
prising RGB video, depth maps, and 3D skeleton keypoints as shown in Figure 31. These da-
tasets are critical for training and evaluating multimodal behavior recognition models under
diverse conditions. Behavior scenarios are enacted using animated virtual occupants, with pre-
defined risk-related actions such as reaching, phone use, distraction, fatigue, and absence of
the driver.

V.Human Character Interaction Component Sensor
Driver Appearance Asset
Animation Event Trigger Component

U Main Manager DMS Monitor Ul Widget

V.Human Controller Enviromnet control Widget

Camera control Widget Select camera type
Warning Alert Widget
Animation Selector widget

Data Capture Ul Widget

Environment Manager
Camera Control Manager Array<Managed Camera> Managed Camera SetCameraTransform

Sensor Manager e e
ST S [Un/|Register Camera
Log Manager

In Cabin Camera Component Set World Location
APl Manager
Set World Rotation

Animation Event trigger Component Set Field of View

Figure 30: Sensor fusion architecture for in-cabin
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Each recorded sequence includes:
e RGB and depth streams, captured from configured virtual sensors.
e 3D skeleton keypoints, extracted using the ZED SDK’s Body38 model.
e Scenario metadata, including behavior labels, involved body parts, timing annotations,
and camera configurations.

These synthetic datasets are annotated using a dedicated labeling pipeline that aligns multi-
modal frames and metadata, ensuring consistency and reproducibility across scenarios.

Figure 31: Example RGB (left) and IR (right) data from the in-cabin simulation platform

Comparative Assessment of Sensor Modalities

In the context of internal monitoring, we have conducted a detailed evaluation of available
sensing modalities. While thermal, radar, and IMU sensors offer advantages in specific contexts,
the simulation framework focuses on vision-based sensing due to its balance between spatial
fidelity, semantic richness, and integration feasibility. RGB-depth stereo cameras, particularly
the ZED 2i, were selected based on criteria such as skeleton tracking capability, SDK flexibility,
and physical integration within vehicle cabins.

Integration with Multimodal Fusion Objectives
The MORAI simulation platform serves as an experimental backbone for multimodal data fusion

by:
e Enabling controlled and repeatable generation of rich sensor data under varied configu-
rations.
e Supporting design exploration of in-cabin sensor layouts and fusion architectures.
e Providing annotated, synchronised multimodal datasets that bridge the gap between
simulated and real-world deployments.
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e By aligning synthetic data generation with the fusion models’ needs, the platform facili-
tates early validation of perception pipelines and offers a cost-effective way to simulate
edge cases that are difficult to capture in real-world driving.

In the final version of the deliverable (deliverable D3.3) will extend the simulation capabilities
to include multi-camera configurations, audio sensing, and low-light environments using virtual
IR sensors. These enhancements will further support the development of comprehensive in-
cabin analytics and reinforce AutoTRUST’s commitment to inclusive and resilient mobility solu-
tions.

4.4 Visual data collection

Open-source datasets for monitoring passengers on buses are limited. However, some relevant
datasets exist for related applications. We provide a description of relevant datasets that were
identified herein while model development will be described in section of deliverable D3.2. It is
worth noting that not all datasets will be used in model development only those that provide
high quality data that aligns with the pilot setup and scenario.

People Detection: The Common Objects in Context (COCO) dataset®is a large-scale image
recognition, segmentation, and captioning dataset widely used in computer vision research. It
contains over 330,000 images, more than 200,000 of which are labelled, with annotations for
over 80 object categories. Among these, the person class is one of the most frequent and
densely annotated categories. Images in COCO often depict people in diverse real-world con-
texts, including varied poses, occlusions, interactions with objects, and in groups, which intro-
duces significant intra-class variability. The dataset includes detailed instance-level annotations
such as bounding boxes, segmentation masks, and key points (for body joints), enabling fine-
grained tasks like human pose estimation. The richness and complexity of the person class an-
notations make COCO particularly valuable for evaluating algorithms on human-centric tasks
under challenging conditions. COCO provides well-annotated bounding boxes and segmenta-
tion masks for people in diverse scenes, which can be used to train object detection models
(e.g., YOLO, Faster R-CNN) to identify passengers boarding, alighting, or standing near the bus.

Purpose: COCQO's person class serves as a robust base for detecting and localizing humans in
complex scenes and can be used effectively for initializing a bus monitoring system. However,
domain-specific fine-tuning on data captured from actual bus environments is essential to
bridge the gap between generic detection capabilities and the specific operational needs of

https://cocodataset.org/#home
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transit safety, crowd control, and behavioural monitoring. We anticipate commencing this ac-
tivity once the pilot setup is complete.

Bus Violence Dataset

The Bus Violence dataset* is a large-scale collection of videos depicting violent and non-violent
situations in public transport environments as shown in Figure 32. This benchmark was gath-
ered from multiple cameras located inside a moving bus where several people simulated vio-
lent actions, such as stealing an object from another person, fighting between passengers, etc.
It 1,400 video clips manually annotated as having or not violent scenes, making it one of the
biggest benchmarks for video violence detection in the literature. Specifically, videos are rec-
orded from three cameras at 25 Frames Per Second (FPS) --- two cameras located in the corners
of the bus (with resolution 960 x 540 px) and one fisheye in the middle (1280 x 960 px). The
clips have a minimum length of 16 frames and a maximum of 48 frames, capturing a very pre-
cise action (either violence or non-violence). The dataset is perfectly balanced, containing 700
videos of violence and 700 videos of non-violence. The Bus Violence dataset is intended as a
test data benchmark. However, for researchers interested in using our data also for training
purposes, we provide training and test splits. The 1,400 video clips are divided into two folders
named Violence /No Violence, containing clips of violent situations and non-violent situations,
respectively; two txt files containing the names of the videos belonging to the training and test
splits, respectively.

Purpose: The Bus Violence dataset can be used in a bus monitoring system to train and evalu-
ate models for automated violence detection in real-time onboard video feeds. By providing
short, annotated video clips of both violent and non-violent interactions recorded from multiple
camera angles inside a moving bus, the dataset enables the development of supervised learning
models (e.g., CNN-RNN hybrids, 3D CNNs, transformers) that can learn temporal and spatial
patterns associated with aggressive behaviours. Its balanced class distribution and high-quality
labels make it suitable for both training and benchmarking violence detection algorithms under
realistic conditions, such as crowded scenes, occlusions, and camera motion. This can support
automated alerts to security personnel, enhance passenger safety, and assist in post-incident
analysis.

https://zenodo.org/records/7044203
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Figure 32: Samples of our Bus Violence benchmark belonging to the violence class, where the actors simulated violent actions,
such as fighting, kicking, or stealing an object from another person. Each row corresponds to a different camera having a differ-
ent perspective.

Multimodal Synthetic Bus Dataset

Given the scarcity of open-source datasets as mentioned above, an alternative approach is to
generate synthetic images of passengers inside a bus as shown in Figure 33. By creating anno-
tated synthetic images that include objects such as empty seats, occupied seats, and standing
or seated passengers, it is possible to train a model effectively for detecting these classes in real
scenarios. The Figure below illustrates an example of such a scene.

Purpose: This dataset can be used to fine-tune existing models or train models that utilise both
RGB and Depth images.

Page 91 of 99
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Figure 33: (left) depth image generated from a generative Al model (right) Image generated from photorealistic simulator.
Real time people counting in cluttered scenes

People Counting Dataset (PCDS)’ is real-world RGB-D dataset comprises over 4,500 videos rec-
orded at the entrance doors of buses in both normal and crowded conditions in China as shown
in Figure 34. The dataset includes footage captured from a ceiling-mounted camera positioned
above the bus doors, recording passengers as they enter and exit.

Purpose: This dataset can be used to train models for monitoring the on-boarding and off-
boarding phase. This of course assumes a suitable camera is placed at the top of the bus door
so that the views are aligned.

Abnormal behaviour detection

Wang and Xia, in their study [54] explored abnormal behaviour detection using the public BOSS
dataset. This dataset contains videos recorded on a train, showcasing both normal and abnor-
mal activities. The abnormal activities include mobile phone theft, fighting, newspaper theft,
harassment, fainting, and panic.

Purpose: This dataset can be used to train models to detect abnormal activities.

https://qithub.com/paperswithcode/paperswithcode-data
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Figure 34: Multi-modal RGB and depth dataset for bus entrance.

4.5 Concluding remarks

The internal monitoring strategies outlined here provide a robust framework for capturing and
interpreting driver and occupant states using synchronised multimodal inputs. By fusing RGB,
audio, and event-based data, the system supports a wide range of safety and comfort applica-
tions—from distraction detection to abnormal sound recognition. The use of synthetic simula-
tion and real-world data ensures adaptability and generalization. These contributions lay the
groundwork for future enhancements in personalized in-cabin intelligence and user-centric ve-
hicle behavior. The conclusion section summarises these developments and outlines the
roadmap for upcoming AutoTRUST deliverables and pilot deployments.
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5 Conclusion

This deliverable has presented the initial release of the multimodal data processing framework
developed within the AutoTRUST project. It outlines the methodologies and algorithmic pipe-
lines that underpin both external perception and internal monitoring systems, emphasizing re-
al-time performance, cost-effectiveness, and adaptability to diverse mobility environments.

On the external sensing side, we introduced advanced techniques such as model-based deep
unrolling for LiDAR super-resolution, enabling low-cost sensors to approximate the perfor-
mance of high-resolution LiDAR in tasks like SLAM and segmentation. Complementary radar-
based perception and mapping pipelines were also developed, leveraging 4D radar point clouds
for robust object tracking and classification in challenging environmental conditions. Additional-
ly, the integration of a federated learning approach, FedKalmanNet, offers a privacy-preserving
solution for multi-modal localisation, validated through simulation datasets.

Additionally, the document detailed a flexible architecture for in-cabin monitoring using RGB
cameras, microphone arrays, and neuromorphic event-based sensors. These modalities are
synchronised through an extensible interface to support analytics such as emotion recognition,
distraction detection, and abnormal sound event detection. To supplement real data and sup-
port model development, a simulation framework was introduced, allowing the generation of
synthetic multimodal datasets within a photorealistic virtual environment.

Collectively, these contributions provide a modular, scalable, and future-proof basis for the Au-
toTRUST’s external and internal monitoring system. This foundational work sets the stage for
future development phases, which will expand these methods with graph-based reasoning, dis-
tributed intelligence, and personalized user modeling. The outcomes will directly support up-
coming deployments and validations in pilot sites, ultimately contributing to the realization of
safe, inclusive, and trustworthy mobility services.
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